PDBsum entry 1bc5

Go to PDB code: 
protein ligands metals links
Complex (methyltransferase/peptide) PDB id
Protein chain
269 a.a. *
Waters ×121
* Residue conservation analysis
PDB id:
Name: Complex (methyltransferase/peptide)
Title: Chemotaxis receptor recognition by protein methyltransferase cher
Structure: Chemotaxis receptor methyltransferase. Chain: a. Synonym: cher, chemotaxis protein methyltransferase. Engineered: yes. Chemotaxis receptor. Chain: t. Fragment: c-terminal pentapeptide, acetylated asn-trp-glu- thr-phe. Synonym: tar.
Source: Salmonella typhimurium. Organism_taxid: 602. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
2.20Å     R-factor:   0.204     R-free:   0.288
Authors: S.Djordjevic,A.M.Stock
Key ref: S.Djordjevic and A.M.Stock (1998). Chemotaxis receptor recognition by protein methyltransferase CheR. Nat Struct Biol, 5, 446-450. PubMed id: 9628482
05-May-98     Release date:   25-Nov-98    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P07801  (CHER_SALTY) -  Chemotaxis protein methyltransferase
288 a.a.
269 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Protein-glutamate O-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: S-adenosyl-L-methionine + protein L-glutamate = S-adenosyl-L-homocysteine + protein L-glutamate methyl ester
protein L-glutamate
Bound ligand (Het Group name = GLU)
matches with 64.00% similarity
Bound ligand (Het Group name = SAH)
corresponds exactly
+ protein L-glutamate methyl ester
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     chemotaxis   3 terms 
  Biochemical function     transferase activity     4 terms  


Nat Struct Biol 5:446-450 (1998)
PubMed id: 9628482  
Chemotaxis receptor recognition by protein methyltransferase CheR.
S.Djordjevic, A.M.Stock.
Signal transduction processes commonly involve reversible covalent modifications of receptors. Bacterial chemotaxis receptors are reversibly methylated at specific glutamate residues within coiled-coil regions of their cytoplasmic domains. Methylation is catalyzed by an S-adenosylmethionine-dependent protein methyltransferase, CheR, that binds to a specific sequence at the C-termini of some chemotaxis receptors. From this tethering point, CheR methylates neighboring receptor molecules. We report the crystal structure, determined to 2.2 A resolution, of a complex of the Salmonella typhimurium methyltransferase CheR bound to the methylation reaction product, S-adenosylhomocysteine (AdoHcy), and the C-terminal pentapeptide of the aspartate receptor, Tar. The structure indicates the basis for the specificity of interaction between the chemoreceptors and CheR and identifies a specific receptor binding motif incorporated in the CheR methyltransferase domain.

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21087385 T.Krell, J.Lacal, F.Muñoz-Martínez, J.A.Reyes-Darias, B.H.Cadirci, C.García-Fontana, and J.L.Ramos (2011).
Diversity at its best: bacterial taxis.
  Environ Microbiol, 13, 1115-1124.  
19156130 D.Kentner, and V.Sourjik (2009).
Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway.
  Mol Syst Biol, 5, 238.  
19606502 U.K.Muppirala, S.Desensi, T.P.Lybrand, G.L.Hazelbauer, and Z.Li (2009).
Molecular modeling of flexible arm-mediated interactions between bacterial chemoreceptors and their modification enzyme.
  Protein Sci, 18, 1702-1714.  
18363791 A.Briegel, H.J.Ding, Z.Li, J.Werner, Z.Gitai, D.P.Dias, R.B.Jensen, and G.J.Jensen (2008).
Location and architecture of the Caulobacter crescentus chemoreceptor array.
  Mol Microbiol, 69, 30-41.  
18844997 H.T.Tran, J.Krushkal, F.M.Antommattei, D.R.Lovley, and R.M.Weis (2008).
Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function.
  BMC Genomics, 9, 471.  
17163981 E.Perez, and A.M.Stock (2007).
Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering.
  Mol Microbiol, 63, 363-378.  
17628132 K.Wuichet, R.P.Alexander, and I.B.Zhulin (2007).
Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis.
  Methods Enzymol, 422, 1.  
17660248 M.Graña, A.Haouz, A.Buschiazzo, I.Miras, A.Wehenkel, V.Bondet, W.Shepard, F.Schaeffer, S.T.Cole, and P.M.Alzari (2007).
The crystal structure of M. leprae ML2640c defines a large family of putative S-adenosylmethionine-dependent methyltransferases in mycobacteria.
  Protein Sci, 16, 1896-1904.
PDB codes: 2ckd 2uyo 2uyq
16573695 M.Li, and G.L.Hazelbauer (2006).
The carboxyl-terminal linker is important for chemoreceptor function.
  Mol Microbiol, 60, 469-479.  
16855257 W.C.Lai, L.A.Barnakova, A.N.Barnakov, and G.L.Hazelbauer (2006).
Similarities and differences in interactions of the activity-enhancing chemoreceptor pentapeptide with the two enzymes of adaptational modification.
  J Bacteriol, 188, 5646-5649.  
15811913 A.Alexandrov, E.J.Grayhack, and E.M.Phizicky (2005).
tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p.
  RNA, 11, 821-830.  
15802240 J.S.Parkinson, P.Ames, and C.A.Studdert (2005).
Collaborative signaling by bacterial chemoreceptors.
  Curr Opin Microbiol, 8, 116-121.  
15853891 S.R.Lybarger, U.Nair, A.A.Lilly, G.L.Hazelbauer, and J.R.Maddock (2005).
Clustering requires modified methyl-accepting sites in low-abundance but not high-abundance chemoreceptors of Escherichia coli.
  Mol Microbiol, 56, 1078-1086.  
16030204 W.C.Lai, and G.L.Hazelbauer (2005).
Carboxyl-terminal extensions beyond the conserved pentapeptide reduce rates of chemoreceptor adaptational modification.
  J Bacteriol, 187, 5115-5121.  
15573139 G.H.Wadhams, and J.P.Armitage (2004).
Making sense of it all: bacterial chemotaxis.
  Nat Rev Mol Cell Biol, 5, 1024-1037.  
15187186 H.Szurmant, and G.W.Ordal (2004).
Diversity in chemotaxis mechanisms among the bacteria and archaea.
  Microbiol Mol Biol Rev, 68, 301-319.  
15306010 S.Banno, D.Shiomi, M.Homma, and I.Kawagishi (2004).
Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor-kinase cluster in an Escherichia coli cell.
  Mol Microbiol, 53, 1051-1063.  
12962628 W.Zhang, and G.N.Phillips (2003).
Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry.
  Structure, 11, 1097-1110.
PDB codes: 1or4 1or6
12101179 D.Shiomi, I.B.Zhulin, M.Homma, and I.Kawagishi (2002).
Dual recognition of the bacterial chemoreceptor by chemotaxis-specific domains of the CheR methyltransferase.
  J Biol Chem, 277, 42325-42333.  
11916840 M.D.Levin, T.S.Shimizu, and D.Bray (2002).
Binding and diffusion of CheR molecules within a cluster of membrane receptors.
  Biophys J, 82, 1809-1817.  
12119291 M.N.Levit, and J.B.Stock (2002).
Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis.
  J Biol Chem, 277, 36760-36765.  
12119289 M.N.Levit, T.W.Grebe, and J.B.Stock (2002).
Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis.
  J Biol Chem, 277, 36748-36754.  
12186970 S.H.Kim, W.Wang, and K.K.Kim (2002).
Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity.
  Proc Natl Acad Sci U S A, 99, 11611-11615.  
12358773 W.G.Barnes, and L.B.Hough (2002).
Membrane-bound histamine N-methyltransferase in mouse brain: possible role in the synaptic inactivation of neuronal histamine.
  J Neurochem, 82, 1262-1271.  
11557810 X.Cheng, and R.J.Roberts (2001).
AdoMet-dependent methylation, DNA methyltransferases and base flipping.
  Nucleic Acids Res, 29, 3784-3795.  
10924144 J.A.Bornhorst, and J.J.Falke (2000).
Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state.
  Biochemistry, 39, 9486-9493.  
9873020 A.Niewmierzycka, and S.Clarke (1999).
S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase.
  J Biol Chem, 274, 814-824.  
  10464232 S.R.Lybarger, and J.R.Maddock (1999).
Clustering of the chemoreceptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB.
  J Bacteriol, 181, 5527-5529.  
9687374 M.S.Jurica, and B.L.Stoddard (1998).
Mind your B's and R's: bacterial chemotaxis, signal transduction and protein recognition.
  Structure, 6, 809-813.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.