spacer
spacer

PDBsum entry 1asz

Go to PDB code: 
protein dna_rna ligands Protein-protein interface(s) links
Complex (aminoacyl-tRNA synthase/tRNA) PDB id
1asz
Jmol
Contents
Protein chains
490 a.a. *
DNA/RNA
Ligands
ATP ×2
* Residue conservation analysis
PDB id:
1asz
Name: Complex (aminoacyl-tRNA synthase/tRNA)
Title: The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction
Structure: T-RNA (75-mer). Chain: r, s. Engineered: yes. Aspartyl-tRNA synthetase. Chain: a, b. Engineered: yes
Source: Synthetic: yes. Saccharomyces cerevisiae
Biol. unit: Tetramer (from PQS)
Resolution:
3.00Å     R-factor:   0.203    
Authors: J.Cavarelli,B.Rees,J.C.Thierry,D.Moras
Key ref: J.Cavarelli et al. (1994). The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J, 13, 327-337. PubMed id: 8313877
Date:
19-Jan-95     Release date:   08-May-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P04802  (SYDC_YEAST) -  Aspartate--tRNA ligase, cytoplasmic
Seq:
Struc:
 
Seq:
Struc:
557 a.a.
490 a.a.
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.6.1.1.12  - Aspartate--tRNA ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + L-aspartate + tRNA(Asp) = AMP + diphosphate + L-aspartyl-tRNA(Asp)
ATP
Bound ligand (Het Group name = ATP)
corresponds exactly
+ L-aspartate
+ tRNA(Asp)
= AMP
+ diphosphate
+ L-aspartyl-tRNA(Asp)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     tRNA aminoacylation for protein translation   2 terms 
  Biochemical function     nucleotide binding     5 terms  

 

 
    reference    
 
 
EMBO J 13:327-337 (1994)
PubMed id: 8313877  
 
 
The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.
J.Cavarelli, G.Eriani, B.Rees, M.Ruff, M.Boeglin, A.Mitschler, F.Martin, J.Gangloff, J.C.Thierry, D.Moras.
 
  ABSTRACT  
 
The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and aspartic acid. When all substrates are present in the crystal, this leads to the formation of the aspartyl-adenylate and/or the aspartyl-tRNA. A class II-specific pathway for the aminoacylation reaction is proposed which explains the known functional differences between the two classes while preserving a common framework. Extended signature sequences characteristic of class II aaRS (motifs 2 and 3) constitute the basic functional unit. The ATP molecule adopts a bent conformation, stabilized by the invariant Arg531 of motif 3 and a magnesium ion coordinated to the pyrophosphate group and to two class-invariant acidic residues. The aspartic acid substrate is positioned by a class II invariant acidic residue, Asp342, interacting with the amino group and by amino acids conserved in the aspartyl synthetase family. The amino acids in contact with the substrates have been probed by site-directed mutagenesis for their functional implication.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22535247 M.Hattori, and E.Gouaux (2012).
Molecular mechanism of ATP binding and ion channel activation in P2X receptors.
  Nature, 485, 207-212.
PDB codes: 4dw0 4dw1
19118381 K.Nozawa, P.O'Donoghue, S.Gundllapalli, Y.Araiso, R.Ishitani, T.Umehara, D.Söll, and O.Nureki (2009).
Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
  Nature, 457, 1163-1167.
PDB codes: 2zni 2znj
19423669 M.Naganuma, S.Sekine, R.Fukunaga, and S.Yokoyama (2009).
Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization.
  Proc Natl Acad Sci U S A, 106, 8489-8494.
PDB codes: 2ztg 2zvf
18997014 A.Minajigi, and C.S.Francklyn (2008).
RNA-assisted catalysis in a protein enzyme: The 2'-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 105, 17748-17753.  
18076053 D.Thompson, C.Lazennec, P.Plateau, and T.Simonson (2008).
Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations.
  Proteins, 71, 1450-1460.  
18502859 G.Mercado, M.Tello, M.Marín, O.Monasterio, and R.Lagos (2008).
The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF.
  J Bacteriol, 190, 5464-5471.  
18366628 M.S.am Busch, A.Lopes, N.Amara, C.Bathelt, and T.Simonson (2008).
Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design.
  BMC Bioinformatics, 9, 148.  
17690095 D.Thompson, C.Lazennec, P.Plateau, and T.Simonson (2007).
Ammonium scanning in an enzyme active site. The chiral specificity of aspartyl-tRNA synthetase.
  J Biol Chem, 282, 30856-30868.  
17317626 E.C.Guth, and C.S.Francklyn (2007).
Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase.
  Mol Cell, 25, 531-542.  
17447878 I.A.Vasil'eva, and N.A.Moor (2007).
Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition.
  Biochemistry (Mosc), 72, 247-263.  
  17620724 K.Suzuki, Y.Sato, Y.Maeda, S.Shimizu, M.T.Hossain, S.Ubukata, T.Sekiguchi, and A.Takénaka (2007).
Crystallization and preliminary X-ray crystallographic study of a putative aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 608-612.  
17301225 S.Kamtekar, M.J.Hohn, H.S.Park, M.Schnitzbauer, A.Sauerwald, D.Söll, and T.A.Steitz (2007).
Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 104, 2620-2625.
PDB code: 2odr
16774919 D.Thompson, and T.Simonson (2006).
Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions.
  J Biol Chem, 281, 23792-23803.  
16681365 J.S.Weinger, and S.A.Strobel (2006).
Participation of the tRNA A76 hydroxyl groups throughout translation.
  Biochemistry, 45, 5939-5948.  
15657145 M.A.Swairjo, and P.R.Schimmel (2005).
Breaking sieve for steric exclusion of a noncognate amino acid from active site of a tRNA synthetase.
  Proc Natl Acad Sci U S A, 102, 988-993.
PDB codes: 1yfr 1yfs 1yft 1ygb
15582453 S.Bernier, P.M.Akochy, J.Lapointe, and R.Chênevert (2005).
Synthesis and aminoacyl-tRNA synthetase inhibitory activity of aspartyl adenylate analogs.
  Bioorg Med Chem, 13, 69-75.  
15452274 A.Fender, R.Geslain, G.Eriani, R.Giegé, M.Sissler, and C.Florentz (2004).
A yeast arginine specific tRNA is a remnant aspartate acceptor.
  Nucleic Acids Res, 32, 5076-5086.  
14722314 S.Cen, H.Javanbakht, M.Niu, and L.Kleiman (2004).
Ability of wild-type and mutant lysyl-tRNA synthetase to facilitate tRNA(Lys) incorporation into human immunodeficiency virus type 1.
  J Virol, 78, 1595-1601.  
12660169 C.Charron, H.Roy, M.Blaise, R.Giegé, and D.Kern (2003).
Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain.
  EMBO J, 22, 1632-1643.
PDB code: 1n9w
14690420 M.L.Bovee, M.A.Pierce, and C.S.Francklyn (2003).
Induced fit and kinetic mechanism of adenylation catalyzed by Escherichia coli threonyl-tRNA synthetase.
  Biochemistry, 42, 15102-15113.  
11809762 C.T.Lemke, and P.L.Howell (2002).
Substrate induced conformational changes in argininosuccinate synthetase.
  J Biol Chem, 277, 13074-13081.
PDB codes: 1kp2 1kp3
11557805 A.Pingoud, and A.Jeltsch (2001).
Structure and function of type II restriction endonucleases.
  Nucleic Acids Res, 29, 3705-3727.  
11223940 J.M.O'Sullivan, M.J.Mihr, M.A.Santos, and M.F.Tuite (2001).
Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans.
  Yeast, 18, 313-322.  
11566892 L.Moulinier, S.Eiler, G.Eriani, J.Gangloff, J.C.Thierry, K.Gabriel, W.H.McClain, and D.Moras (2001).
The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism.
  EMBO J, 20, 5290-5301.
PDB code: 1il2
11679717 R.Fishman, V.Ankilova, N.Moor, and M.Safro (2001).
Structure at 2.6 A resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese.
  Acta Crystallogr D Biol Crystallogr, 57, 1534-1544.
PDB code: 1jjc
11329259 S.A.Hawko, and C.S.Francklyn (2001).
Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element.
  Biochemistry, 40, 1930-1936.  
11157762 S.Kawaguchi, J.Müller, D.Linde, S.Kuramitsu, T.Shibata, Y.Inoue, D.G.Vassylyev, and S.Yokoyama (2001).
The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus.
  EMBO J, 20, 562-569.
PDB code: 1gd7
11112540 B.Burke, F.Yang, F.Chen, C.Stehlin, B.Chan, and K.Musier-Forsyth (2000).
Evolutionary coadaptation of the motif 2--acceptor stem interaction in the class II prolyl-tRNA synthetase system.
  Biochemistry, 39, 15540-15547.  
11060012 B.Delagoutte, D.Moras, and J.Cavarelli (2000).
tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.
  EMBO J, 19, 5599-5610.
PDB codes: 1f7u 1f7v
10668794 B.Masquida, and E.Westhof (2000).
On the wobble GoU and related pairs.
  RNA, 6, 9.  
10913247 G.Desogus, F.Todone, P.Brick, and S.Onesti (2000).
Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
  Biochemistry, 39, 8418-8425.
PDB codes: 1e1o 1e1t 1e22 1e24
10666468 J.A.Carrodeguas, and D.F.Bogenhagen (2000).
Protein sequences conserved in prokaryotic aminoacyl-tRNA synthetases are important for the activity of the processivity factor of human mitochondrial DNA polymerase.
  Nucleic Acids Res, 28, 1237-1244.  
10821696 J.Wientges, J.Pütz, R.Giegé, C.Florentz, and A.Schwienhorst (2000).
Selection of viral RNA-derived tRNA-like structures with improved valylation activities.
  Biochemistry, 39, 6207-6218.  
10713991 K.A.Denessiouk, and M.S.Johnson (2000).
When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families.
  Proteins, 38, 310-326.  
10966471 M.Ibba, and D.Soll (2000).
Aminoacyl-tRNA synthesis.
  Annu Rev Biochem, 69, 617-650.  
10737207 T.Takita, N.Shimizu, T.Sukata, S.Hashimoto, E.Akita, T.Yokota, N.Esaki, K.Soda, K.Inouye, and B.Tonomura (2000).
Lysyl-tRNA synthetase of Bacillus stearothermophilus molecular cloning and expression of the gene.
  Biosci Biotechnol Biochem, 64, 432-437.  
  10739241 W.Dall'Acqua, and P.Carter (2000).
Substrate-assisted catalysis: molecular basis and biological significance.
  Protein Sci, 9, 1-9.  
10585437 B.A.Steer, and P.Schimmel (1999).
Major anticodon-binding region missing from an archaebacterial tRNA synthetase.
  J Biol Chem, 274, 35601-35606.  
10570126 B.A.Steer, and P.Schimmel (1999).
Domain-domain communication in a miniature archaebacterial tRNA synthetase.
  Proc Natl Acad Sci U S A, 96, 13644-13649.  
10213598 B.A.Steer, and P.Schimmel (1999).
Different adaptations of the same peptide motif for tRNA functional contacts by closely homologous tRNA synthetases.
  Biochemistry, 38, 4965-4971.  
10089405 C.Sauter, B.Lorber, D.Kern, J.Cavarelli, D.Moras, and R.Giegé (1999).
Crystallogenesis studies on yeast aspartyl-tRNA synthetase: use of phase diagram to improve crystal quality.
  Acta Crystallogr D Biol Crystallogr, 55, 149-156.  
10518524 K.Y.Chang, G.Varani, S.Bhattacharya, H.Choi, and W.H.McClain (1999).
Correlation of deformability at a tRNA recognition site and aminoacylation specificity.
  Proc Natl Acad Sci U S A, 96, 11764-11769.  
10430882 M.Sissler, C.Delorme, J.Bond, S.D.Ehrlich, P.Renault, and C.Francklyn (1999).
An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis.
  Proc Natl Acad Sci U S A, 96, 8985-8990.  
10562565 S.Eiler, A.Dock-Bregeon, L.Moulinier, J.C.Thierry, and D.Moras (1999).
Synthesis of aspartyl-tRNA(Asp) in Escherichia coli--a snapshot of the second step.
  EMBO J, 18, 6532-6541.
PDB code: 1c0a
10430027 W.Freist, J.F.Verhey, A.Rühlmann, D.H.Gauss, and J.G.Arnez (1999).
Histidyl-tRNA synthetase.
  Biol Chem, 380, 623-646.  
9582288 C.Berthet-Colominas, L.Seignovert, M.Härtlein, M.Grotli, S.Cusack, and R.Leberman (1998).
The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.
  EMBO J, 17, 2947-2960.  
10089514 C.Briand, A.Poterszman, A.Mitschler, M.Yusupov, J.C.Thierry, and D.Moras (1998).
Crystals of Thermus thermophilus tRNAAsp complexed with its cognate aspartyl-tRNA synthetase have a solvent content of 75%. Comparison with other aminoacylation systems.
  Acta Crystallogr D Biol Crystallogr, 54, 1382-1386.  
9622512 C.Stehlin, B.Burke, F.Yang, H.Liu, K.Shiba, and K.Musier-Forsyth (1998).
Species-specific differences in the operational RNA code for aminoacylation of tRNAPro.
  Biochemistry, 37, 8605-8613.  
9724658 E.Schmitt, L.Moulinier, S.Fujiwara, T.Imanaka, J.C.Thierry, and D.Moras (1998).
Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation.
  EMBO J, 17, 5227-5237.
PDB codes: 1b8a 3nel 3nem 3nen
9605503 I.Landrieu, M.Vandenbol, R.Leberman, D.Portetelle, and M.Hartlein (1998).
Identification of YHR019 in Saccharomyces cerevisiae chromosome VIII as the gene for the cytosolic asparaginyl-tRNA synthetase.
  Yeast, 14, 527-533.  
9736621 J.Cavarelli, B.Delagoutte, G.Eriani, J.Gangloff, and D.Moras (1998).
L-arginine recognition by yeast arginyl-tRNA synthetase.
  EMBO J, 17, 5438-5448.
PDB code: 1bs2
9437423 T.Nakatsu, H.Kato, and J.Oda (1998).
Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase.
  Nat Struct Biol, 5, 15-19.
PDB codes: 11as 12as
9562563 V.L.Rath, L.F.Silvian, B.Beijer, B.S.Sproat, and T.A.Steitz (1998).
How glutaminyl-tRNA synthetase selects glutamine.
  Structure, 6, 439-449.
PDB code: 1qtq
9115984 A.Aberg, A.Yaremchuk, M.Tukalo, B.Rasmussen, and S.Cusack (1997).
Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase.
  Biochemistry, 36, 3084-3094.
PDB codes: 1adj 1ady
9210460 A.Pingoud, and A.Jeltsch (1997).
Recognition and cleavage of DNA by type-II restriction endonucleases.
  Eur J Biochem, 246, 1.  
  8995413 B.Lenhard, S.Filipić, I.Landeka, I.Skrtić, D.Söll, and I.Weygand-Durasević (1997).
Defining the active site of yeast seryl-tRNA synthetase. Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition.
  J Biol Chem, 272, 1136-1141.  
9062123 C.Stehlin, D.H.Heacock, H.Liu, and K.Musier-Forsyth (1997).
Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
  Biochemistry, 36, 2932-2938.  
  9171418 F.Martin, G.J.Sharples, R.G.Lloyd, S.Eiler, D.Moras, J.Gangloff, and G.Eriani (1997).
Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant.
  J Bacteriol, 179, 3691-3696.  
9287150 H.Jakubowski (1997).
Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases.
  Biochemistry, 36, 11077-11085.  
9207058 J.G.Arnez, J.G.Augustine, D.Moras, and C.S.Francklyn (1997).
The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 94, 7144-7149.
PDB codes: 1kmm 1kmn
9129831 N.Murali, Y.Lin, Y.Mechulam, P.Plateau, and B.D.Rao (1997).
Adenosine conformations of nucleotides bound to methionyl tRNA synthetase by transferred nuclear Overhauser effect spectroscopy.
  Biophys J, 72, 2275-2284.  
9288933 R.Dieckmann, M.Pavela-Vrancic, E.Pfeifer, H.von Döhren, and H.Kleinkauf (1997).
The adenylation domain of tyrocidine synthetase 1--structural and functional role of the interdomain linker region and the (S/T)GT(T/S)GXPKG core sequence.
  Eur J Biochem, 247, 1074-1082.  
9434910 S.Cusack (1997).
Aminoacyl-tRNA synthetases.
  Curr Opin Struct Biol, 7, 881-889.  
9254614 S.K.Boehlein, E.S.Walworth, and S.M.Schuster (1997).
Identification of cysteine-523 in the aspartate binding site of Escherichia coli asparagine synthetase B.
  Biochemistry, 36, 10168-10177.  
9016717 Y.Goldgur, L.Mosyak, L.Reshetnikova, V.Ankilova, O.Lavrik, S.Khodyreva, and M.Safro (1997).
The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe.
  Structure, 5, 59-68.
PDB code: 1eiy
8805533 E.Conti, N.P.Franks, and P.Brick (1996).
Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes.
  Structure, 4, 287-298.
PDB code: 1lci
8910590 F.Agou, J.P.Waller, and M.Mirande (1996).
Expression of rat aspartyl-tRNA synthetase in Saccharomyces cerevisiae. Role of the NH2-terminal polypeptide extension on enzyme activity and stability.
  J Biol Chem, 271, 29295-29303.  
8652522 H.D.Becker, R.Giegé, and D.Kern (1996).
Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus.
  Biochemistry, 35, 7447-7458.  
  8617245 K.W.Hong, M.Ibba, I.Weygand-Durasevic, M.J.Rogers, H.U.Thomann, and D.Söll (1996).
Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase.
  EMBO J, 15, 1983-1991.  
8706760 L.Seignovert, M.Härtlein, and R.Leberman (1996).
Asparaginyl-tRNA synthetase from Thermus thermophilus HB8. Sequence of the gene and crystallization of the enzyme expressed in Escherichia coli.
  Eur J Biochem, 239, 501-508.  
8797857 R.K.Airas (1996).
Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
  Eur J Biochem, 240, 223-231.  
  8654381 S.Cusack, A.Yaremchuk, and M.Tukalo (1996).
The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site.
  EMBO J, 15, 2834-2842.  
  8947055 S.Cusack, A.Yaremchuk, and M.Tukalo (1996).
The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue.
  EMBO J, 15, 6321-6334.  
8555191 S.Sever, K.Rogers, M.J.Rogers, C.Carter, and D.Söll (1996).
Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
  Biochemistry, 35, 32-40.  
  7556056 D.T.Logan, M.H.Mazauric, D.Kern, and D.Moras (1995).
Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus.
  EMBO J, 14, 4156-4167.
PDB code: 1ati
  7796819 H.Bedouelle, and R.Nageotte (1995).
Macromolecular recognition through electrostatic repulsion.
  EMBO J, 14, 2945-2950.  
7613865 H.Belrhali, A.Yaremchuk, M.Tukalo, C.Berthet-Colominas, B.Rasmussen, P.Bösecke, O.Diat, and S.Cusack (1995).
The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
  Structure, 3, 341-352.  
  7556055 J.G.Arnez, D.C.Harris, A.Mitschler, B.Rees, C.S.Francklyn, and D.Moras (1995).
Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.
  EMBO J, 14, 4143-4155.
PDB code: 1htt
7664121 L.Mosyak, L.Reshetnikova, Y.Goldgur, M.Delarue, and M.G.Safro (1995).
Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus.
  Nat Struct Biol, 2, 537-547.
PDB code: 1pys
8524648 R.Kreutzer, D.Kern, R.Giegé, and J.Rudinger (1995).
Footprinting of tRNA(Phe) transcripts from Thermus thermophilus HB8 with the homologous phenylalanyl-tRNA synthetase reveals a novel mode of interaction.
  Nucleic Acids Res, 23, 4598-4602.  
7552701 S.Cusack (1995).
Eleven down and nine to go.
  Nat Struct Biol, 2, 824-831.  
7735833 S.Onesti, A.D.Miller, and P.Brick (1995).
The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli.
  Structure, 3, 163-176.
PDB code: 1lyl
7719852 T.Schweins, M.Geyer, K.Scheffzek, A.Warshel, H.R.Kalbitzer, and A.Wittinghofer (1995).
Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins.
  Nat Struct Biol, 2, 36-44.  
  8045252 M.Delarue, A.Poterszman, S.Nikonov, M.Garber, D.Moras, and J.C.Thierry (1994).
Crystal structure of a prokaryotic aspartyl tRNA-synthetase.
  EMBO J, 13, 3219-3229.  
7937960 M.Liu, and J.Horowitz (1994).
Functional transfer RNAs with modifications in the 3'-CCA end: differential effects on aminoacylation and polypeptide synthesis.
  Proc Natl Acad Sci U S A, 91, 10389-10393.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.