PDBsum entry 1aoz

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase(oxygen acceptor) PDB id
Protein chains
552 a.a. *
NAG ×2
C2O ×2
C1O ×2
_CU ×3
Waters ×970
* Residue conservation analysis
PDB id:
Name: Oxidoreductase(oxygen acceptor)
Title: Refined crystal structure of ascorbate oxidase at 1.9 angstr resolution
Structure: Ascorbate oxidase. Chain: a, b. Engineered: yes
Source: Cucurbita pepo var. Melopepo. Zucchini. Organism_taxid: 3665. Strain: var. Melopepo
Biol. unit: Dimer (from PQS)
1.90Å     R-factor:   not given    
Authors: A.Messerschmidt,R.Ladenstein,R.Huber
Key ref: A.Messerschmidt et al. (1992). Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J Mol Biol, 224, 179-205. PubMed id: 1548698
08-Jan-92     Release date:   31-Oct-93    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P37064  (ASO_CUCPM) -  L-ascorbate oxidase
552 a.a.
552 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - L-ascorbate oxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 4 L-ascorbate + O2 = 4 monodehydroascorbate + 2 H2O
4 × L-ascorbate
Bound ligand (Het Group name = NAG)
matches with 62.50% similarity
+ O(2)
= 4 × monodehydroascorbate
+ 2 × H(2)O
      Cofactor: Cu cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   1 term 
  Biological process     oxidation-reduction process   1 term 
  Biochemical function     oxidoreductase activity     4 terms  


J Mol Biol 224:179-205 (1992)
PubMed id: 1548698  
Refined crystal structure of ascorbate oxidase at 1.9 A resolution.
A.Messerschmidt, R.Ladenstein, R.Huber, M.Bolognesi, L.Avigliano, R.Petruzzelli, A.Rossi, A.Finazzi-Agró.
The crystal structure of the fully oxidized form of ascorbate oxidase (EC from Zucchini has been refined at 1.90 A (1 A = 0.1 nm) resolution, using an energy-restrained least-squares refinement procedure. The refined model, which includes 8764 protein atoms, 9 copper atoms and 970 solvent molecules, has a crystallographic R-factor of 20.3% for 85,252 reflections between 8 and 1.90 A resolution. The root-mean-square deviation in bond lengths and bond angles from ideal values is 0.011 A and 2.99 degrees, respectively. The subunits of 552 residues (70,000 Mr) are arranged as tetramers with D2 symmetry. One of the dyads is realized by the crystallographic axis parallel to the c-axis giving one dimer in the asymmetric unit. The dimer related about this crystallographic axis is suggested as the dimer present in solution. Asn92 is the attachment site for one of the two N-linked sugar moieties, which has defined electron density for the N-linked N-acetyl-glucosamine ring. Each subunit is built up by three domains arranged sequentially on the polypeptide chain and tightly associated in space. The folding of all three domains is of a similar beta-barrel type and related to plastocyanin and azurin. An analysis of intra- and intertetramer hydrogen bond and van der Waals interactions is presented. Each subunit has four copper atoms bound as mononuclear and trinuclear species. The mononuclear copper has two histidine, a cysteine and a methionine ligand and represents the type-1 copper. It is located in domain 3. The bond lengths of the type-1 copper centre are comparable to the values for oxidized plastocyanin. The trinuclear cluster has eight histidine ligands symmetrically supplied from domain 1 and 3. It may be subdivided into a pair of copper atoms with histidine ligands whose ligating N-atoms (5 NE2 atoms and one ND1 atom) are arranged trigonal prismatic. The pair is the putative type-3 copper. The remaining copper has two histidine ligands and is the putative spectroscopic type-2 copper. Two oxygen atoms are bound to the trinuclear species as OH- or O2- and bridging the putative type-3 copper pair and as OH- or H2O bound to the putative type-2 copper trans to the copper pair. The bond lengths within the trinuclear copper site are similar to comparable binuclear model compounds. The putative binding site for the reducing substrate is close to the type-1 copper.(ABSTRACT TRUNCATED AT 400 WORDS)

Literature references that cite this PDB file's key reference

  PubMed id Reference
21298193 F.G.Mutti, M.Gullotti, L.Casella, L.Santagostini, R.Pagliarin, K.K.Andersson, M.F.Iozzi, and G.Zoppellaro (2011).
A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations.
  Dalton Trans, 40, 5436-5457.  
20377263 A.J.Augustine, C.Kjaergaard, M.Qayyum, L.Ziegler, D.J.Kosman, K.O.Hodgson, B.Hedman, and E.I.Solomon (2010).
Systematic perturbation of the trinuclear copper cluster in the multicopper oxidases: the role of active site asymmetry in its reduction of O2 to H2O.
  J Am Chem Soc, 132, 6057-6067.  
20717649 F.Rodríguez-Rincón, A.Suarez, M.Lucas, L.F.Larrondo, la Rubia, J.Polaina, and J.Martínez (2010).
Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure.
  Arch Microbiol, 192, 883-892.  
20822511 I.Bento, C.S.Silva, Z.Chen, L.O.Martins, P.F.Lindley, and C.M.Soares (2010).
Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer.
  BMC Struct Biol, 10, 28.
PDB codes: 2x87 2x88
20852807 L.Dos Santos, V.Climent, C.F.Blanford, and F.A.Armstrong (2010).
Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction.
  Phys Chem Chem Phys, 12, 13962-13974.  
20200715 Z.Chen, P.Durão, C.S.Silva, M.M.Pereira, S.Todorovic, P.Hildebrandt, I.Bento, P.F.Lindley, and L.O.Martins (2010).
The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis.
  Dalton Trans, 39, 2875-2882.
PDB codes: 4ako 4akp 4akq
18581264 D.W.Wong (2009).
Structure and action mechanism of ligninolytic enzymes.
  Appl Biochem Biotechnol, 157, 174-209.  
19346471 J.Yoon, S.Fujii, and E.I.Solomon (2009).
Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
  Proc Natl Acad Sci U S A, 106, 6585-6590.  
19297322 K.Kataoka, R.Sugiyama, S.Hirota, M.Inoue, K.Urata, Y.Minagawa, D.Seo, and T.Sakurai (2009).
Four-electron Reduction of Dioxygen by a Multicopper Oxidase, CueO, and Roles of Asp112 and Glu506 Located Adjacent to the Trinuclear Copper Center.
  J Biol Chem, 284, 14405-14413.  
19465775 K.M.Polyakov, T.V.Fedorova, E.V.Stepanova, E.A.Cherkashin, S.A.Kurzeev, B.V.Strokopytov, V.S.Lamzin, and O.V.Koroleva (2009).
Structure of native laccase from Trametes hirsuta at 1.8 A resolution.
  Acta Crystallogr D Biol Crystallogr, 65, 611-617.  
19412602 S.R.Lee, W.J.Joo, Y.U.Baek, Y.K.Lee, S.W.Yu, Y.R.Kim, K.O.Chay, S.H.Cho, and S.O.Rang (2009).
Intracellular substrates of a heme-containing ascorbate oxidase in Pleurotus ostreatus.
  J Microbiol, 47, 178-186.  
18250895 C.Dennison (2008).
The role of ligand-containing loops at copper sites in proteins.
  Nat Prod Rep, 25, 15-24.  
18648693 E.I.Solomon, A.J.Augustine, and J.Yoon (2008).
O2 reduction to H2O by the multicopper oxidases.
  Dalton Trans, (), 3921-3932.  
17965133 E.Sedlák, G.Zoldák, and P.Wittung-Stafshede (2008).
Role of copper in thermal stability of human ceruloplasmin.
  Biophys J, 94, 1384-1391.  
18825268 F.G.Mutti, R.Pievo, M.Sgobba, M.Gullotti, and L.Santagostini (2008).
Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on d-(+)-catechin and L-( - )-epicatechin with copper complexes.
  Bioinorg Chem Appl, (), 762029.  
17918838 A.J.Augustine, L.Quintanar, C.S.Stoj, D.J.Kosman, and E.I.Solomon (2007).
Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: the role of protons in reductive cleavage of the O-O bond in the multicopper oxidase Fet3p.
  J Am Chem Soc, 129, 13118-13126.  
17472331 E.I.Solomon, R.Sarangi, J.S.Woertink, A.J.Augustine, J.Yoon, and S.Ghosh (2007).
O2 and N2O activation by Bi-, Tri-, and tetranuclear Cu clusters in biology.
  Acc Chem Res, 40, 581-591.  
17242517 I.Bento, C.Peixoto, V.N.Zaitsev, and P.F.Lindley (2007).
Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites.
  Acta Crystallogr D Biol Crystallogr, 63, 240-248.
PDB code: 2j5w
17702865 J.Yoon, B.D.Liboiron, R.Sarangi, K.O.Hodgson, B.Hedman, and E.I.Solomon (2007).
The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate.
  Proc Natl Acad Sci U S A, 104, 13609-13614.  
17918839 J.Yoon, and E.I.Solomon (2007).
Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond.
  J Am Chem Soc, 129, 13127-13136.  
17570147 M.A.Marti-Renom, A.Rossi, F.Al-Shahrour, F.P.Davis, U.Pieper, J.Dopazo, and A.Sali (2007).
The AnnoLite and AnnoLyze programs for comparative annotation of protein structures.
  BMC Bioinformatics, 8, S4.  
17897461 M.Ferraroni, N.M.Myasoedova, V.Schmatchenko, A.A.Leontievsky, L.A.Golovleva, A.Scozzafava, and F.Briganti (2007).
Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases.
  BMC Struct Biol, 7, 60.
PDB code: 2qt6
18021071 O.V.Morozova, G.P.Shumakovich, M.A.Gorbacheva, S.V.Shleev, and A.I.Yaropolov (2007).
"Blue" laccases.
  Biochemistry (Mosc), 72, 1136-1150.  
17828360 P.D.Croucher, M.H.Klingele, A.Noble, and S.Brooker (2007).
Tricopper(II) complexes of unsymmetrical macrocycles incorporating phenol and pyridine moieties: the development of two stepwise routes.
  Dalton Trans, (), 4000-4007.  
16944230 A.V.Lyashenko, I.Bento, V.N.Zaitsev, N.E.Zhukhlistova, Y.N.Zhukova, A.G.Gabdoulkhakov, E.Y.Morgunova, W.Voelter, G.S.Kachalova, E.V.Stepanova, O.V.Koroleva, V.S.Lamzin, V.I.Tishkov, C.Betzel, P.F.Lindley, and A.M.Mikhailov (2006).
X-ray structural studies of the fungal laccase from Cerrena maxima.
  J Biol Inorg Chem, 11, 963-973.  
  17012782 A.V.Lyashenko, N.E.Zhukhlistova, A.G.Gabdoulkhakov, Y.N.Zhukova, W.Voelter, V.N.Zaitsev, I.Bento, E.V.Stepanova, G.S.Kachalova, O.V.Koroleva, E.A.Cherkashyn, V.I.Tishkov, V.S.Lamzin, K.Schirwitz, E.Y.Morgunova, C.Betzel, P.F.Lindley, and A.M.Mikhailov (2006).
Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 954-957.
PDB code: 2h5u
17059465 E.Nicolai, A.Di Venere, N.Rosato, A.Rossi, A.Finazzi Agro', and G.Mei (2006).
Physico-chemical properties of molten dimer ascorbate oxidase.
  FEBS J, 273, 5194-5204.  
16791638 I.Bento, M.A.Carrondo, and P.F.Lindley (2006).
Reduction of dioxygen by enzymes containing copper.
  J Biol Inorg Chem, 11, 539-547.  
17137312 T.S.Porto, C.S.Porto, M.T.Cavalcanti, J.L.Filho, P.Perego, A.L.Porto, A.Converti, and A.Pessoa (2006).
Kinetic and thermodynamic investigation on ascorbate oxidase activity and stability of a Cucurbita maxima extract.
  Biotechnol Prog, 22, 1637-1642.  
16230618 A.B.Taylor, C.S.Stoj, L.Ziegler, D.J.Kosman, and P.J.Hart (2005).
The copper-iron connection in biology: structure of the metallo-oxidase Fet3p.
  Proc Natl Acad Sci U S A, 102, 15459-15464.
PDB code: 1zpu
16231129 G.Battistuzzi, M.Bellei, A.Leonardi, R.Pierattelli, A.De Candia, A.J.Vila, and M.Sola (2005).
Reduction thermodynamics of the T1 Cu site in plant and fungal laccases.
  J Biol Inorg Chem, 10, 867-873.  
16234932 I.Bento, L.O.Martins, G.Gato Lopes, M.Arménia Carrondo, and P.F.Lindley (2005).
Dioxygen reduction by multi-copper oxidases; a structural perspective.
  Dalton Trans, (), 3507-3513.
PDB codes: 1w6l 1w6w 1w8e 2bhf
16471062 I.Gautier-Luneau, D.Phanon, C.Duboc, D.Luneau, and J.L.Pierre (2005).
Electron delocalisation in a trinuclear copper(II) complex: high-field EPR characterization and magnetic properties of Na3[Cu3(mal)3(H2O)] x 8H2O.
  Dalton Trans, (), 3795-3799.  
16224785 N.Darzentas, I.Rigoutsos, and C.A.Ouzounis (2005).
Sensitive detection of sequence similarity using combinatorial pattern discovery: a challenging study of two distantly related protein families.
  Proteins, 61, 926-937.  
15854824 S.Shleev, J.Tkac, A.Christenson, T.Ruzgas, A.I.Yaropolov, J.W.Whittaker, and L.Gorton (2005).
Direct electron transfer between copper-containing proteins and electrodes.
  Biosens Bioelectron, 20, 2517-2554.  
14764581 F.J.Enguita, D.Marçal, L.O.Martins, R.Grenha, A.O.Henriques, P.F.Lindley, and M.A.Carrondo (2004).
Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis.
  J Biol Chem, 279, 23472-23476.
PDB codes: 1hkz 1uvw 3zdw
15006640 L.Santagostini, M.Gullotti, L.De Gioia, P.Fantucci, E.Franzini, A.Marchesini, E.Monzani, and L.Casella (2004).
Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies.
  Int J Biochem Cell Biol, 36, 881-892.  
15295117 M.C.Machczynski, E.Vijgenboom, B.Samyn, and G.W.Canters (2004).
Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity.
  Protein Sci, 13, 2388-2397.  
12794343 A.J.Blake, P.Hubberstey, A.D.Mackrell, and C.Wilson (2003).
3,6-Dichloro-4-[2-(4-thiamorpholino)ethanesulfanyl]pyridazine and 3,6-bis(pyrazol-1-yl)-4-[2-(4-thiamorpholino)ethanesulfanyl]pyridazine.
  Acta Crystallogr C, 59, o293-o297.  
12637519 F.J.Enguita, L.O.Martins, A.O.Henriques, and M.A.Carrondo (2003).
Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties.
  J Biol Chem, 278, 19416-19425.
PDB code: 1gsk
14532088 L.F.Larrondo, L.Salas, F.Melo, R.Vicuña, and D.Cullen (2003).
A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity.
  Appl Environ Microbiol, 69, 6257-6263.  
12794077 S.A.Roberts, G.F.Wildner, G.Grass, A.Weichsel, A.Ambrus, C.Rensing, and W.R.Montfort (2003).
A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO.
  J Biol Chem, 278, 31958-31963.
PDB codes: 1n68 1pf3
12009907 A.E.Palmer, L.Quintanar, S.Severance, T.P.Wang, D.J.Kosman, and E.I.Solomon (2002).
Spectroscopic characterization and O2 reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p.
  Biochemistry, 41, 6438-6448.  
12405829 B.Bennett, W.E.Antholine, V.M.D'souza, G.Chen, L.Ustinyuk, and R.C.Holz (2002).
Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli.
  J Am Chem Soc, 124, 13025-13034.  
12163489 K.Piontek, M.Antorini, and T.Choinowski (2002).
Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers.
  J Biol Chem, 277, 37663-37669.
PDB code: 1gyc
11884407 L.O.Martins, C.M.Soares, M.M.Pereira, M.Teixeira, T.Costa, G.H.Jones, and A.O.Henriques (2002).
Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat.
  J Biol Chem, 277, 18849-18859.  
12118243 N.Hakulinen, L.L.Kiiskinen, K.Kruus, M.Saloheimo, A.Paananen, A.Koivula, and J.Rouvinen (2002).
Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site.
  Nat Struct Biol, 9, 601-605.
PDB code: 1gw0
12177070 P.Vachette, E.Dainese, V.B.Vasyliev, P.Di Muro, M.Beltramini, D.I.Svergun, V.De Filippis, and B.Salvato (2002).
A key structural role for active site type 3 copper ions in human ceruloplasmin.
  J Biol Chem, 277, 40823-40831.  
11867755 S.A.Roberts, A.Weichsel, G.Grass, K.Thakali, J.T.Hazzard, G.Tollin, C.Rensing, and W.R.Montfort (2002).
Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli.
  Proc Natl Acad Sci U S A, 99, 2766-2771.
PDB code: 1kv7
12044164 T.Bertrand, C.Jolivalt, P.Briozzo, E.Caminade, N.Joly, C.Madzak, and C.Mougin (2002).
Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.
  Biochemistry, 41, 7325-7333.
PDB code: 1kya
12404359 E.I.Solomon, P.Chen, M.Metz, S.K.Lee, and A.E.Palmer (2001).
Oxygen Binding, Activation, and Reduction to Water by Copper Proteins.
  Angew Chem Int Ed Engl, 40, 4570-4590.  
11173497 V.Ducros, A.M.Brzozowski, K.S.Wilson, P.Ostergaard, P.Schneider, A.Svendson, and G.J.Davies (2001).
Structure of the laccase from Coprinus cinereus at 1.68 A resolution: evidence for different 'type 2 Cu-depleted' isoforms.
  Acta Crystallogr D Biol Crystallogr, 57, 333-336.
PDB code: 1hfu
10712591 L.Otterbein, E.Record, S.Longhi, M.Asther, and S.Moukha (2000).
Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris.
  Eur J Biochem, 267, 1619-1625.  
10642183 M.J.Colaneri, J.Vitali, and J.Peisach (2000).
Electron spin-echo envelope modulation study of multicrystalline Cu(2+)-insulin: effects of Cd(2+) on the nuclear quadrupole interaction of the Cu(2+)-coordinated imidazole remote nitrogen.
  Biochemistry, 39, 584-591.  
10694398 N.J.Blackburn, M.Ralle, R.Hassett, and D.J.Kosman (2000).
Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase.
  Biochemistry, 39, 2316-2324.  
10074356 A.Shimizu, J.H.Kwon, T.Sasaki, T.Satoh, N.Sakurai, T.Sakurai, S.Yamaguchi, and T.Samejima (1999).
Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands.
  Biochemistry, 38, 3034-3042.  
10607672 C.Eicken, B.Krebs, and J.C.Sacchettini (1999).
Catechol oxidase - structure and activity.
  Curr Opin Struct Biol, 9, 677-683.  
10212209 F.Xu, A.E.Palmer, D.S.Yaver, R.M.Berka, G.A.Gambetta, S.H.Brown, and E.I.Solomon (1999).
Targeted mutations in a Trametes villosa laccase. Axial perturbations of the T1 copper.
  J Biol Chem, 274, 12372-12375.  
10551829 H.Huang, G.Zoppellaro, and T.Sakurai (1999).
Spectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen by Rhus vernicifera laccase.
  J Biol Chem, 274, 32718-32724.  
10583375 I.Gromov, A.Marchesini, O.Farver, I.Pecht, and D.Goldfarb (1999).
Azide binding to the trinuclear copper center in laccase and ascorbate oxidase.
  Eur J Biochem, 266, 820-830.  
  10543802 J.Zhao, and H.S.Kwan (1999).
Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes.
  Appl Environ Microbiol, 65, 4908-4913.  
10226045 M.A.McGuirl, and D.M.Dooley (1999).
Copper-containing oxidases.
  Curr Opin Chem Biol, 3, 138-144.  
  10584012 M.Gelo-Pujic, H.H.Kim, N.G.Butlin, and G.T.Palmore (1999).
Electrochemical studies of a truncated laccase produced in Pichia pastoris.
  Appl Environ Microbiol, 65, 5515-5521.  
9722559 R.F.Hassett, D.S.Yuan, and D.J.Kosman (1998).
Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae, a multinuclear copper ferroxidase enzyme.
  J Biol Chem, 273, 23274-23282.  
9649340 T.E.Machonkin, H.H.Zhang, B.Hedman, K.O.Hodgson, and E.I.Solomon (1998).
Spectroscopic and magnetic studies of human ceruloplasmin: identification of a redox-inactive reduced Type 1 copper site.
  Biochemistry, 37, 9570-9578.  
9546223 V.Ducros, A.M.Brzozowski, K.S.Wilson, S.H.Brown, P.Ostergaard, P.Schneider, D.S.Yaver, A.H.Pedersen, and G.J.Davies (1998).
Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution.
  Nat Struct Biol, 5, 310-316.
PDB code: 1a65
9188741 A.V.Efimov (1997).
Structural trees for protein superfamilies.
  Proteins, 28, 241-260.  
  9300480 C.J.Tsai, D.Xu, and R.Nussinov (1997).
Structural motifs at protein-protein interfaces: protein cores versus two-state and three-state model complexes.
  Protein Sci, 6, 1793-1805.  
9283082 G.Mei, A.Di Venere, M.Buganza, P.Vecchini, N.Rosato, and A.Finazzi-Agro' (1997).
Role of quaternary structure in the stability of dimeric proteins: the case of ascorbate oxidase.
  Biochemistry, 36, 10917-10922.  
9116020 H.Duewel, E.Daub, V.Robinson, and J.F.Honek (1997).
Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for use in protein 19F NMR.
  Biochemistry, 36, 3404-3416.  
  9098885 M.E.Murphy, P.F.Lindley, and E.T.Adman (1997).
Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions.
  Protein Sci, 6, 761-770.  
9125505 S.Gaspard, E.Monzani, L.Casella, M.Gullotti, S.Maritano, and A.Marchesini (1997).
Inhibition of ascorbate oxidase by phenolic compounds. Enzymatic and spectroscopic studies.
  Biochemistry, 36, 4852-4859.  
9405594 S.Karlin, Z.Y.Zhu, and K.D.Karlin (1997).
The extended environment of mononuclear metal centers in protein structures.
  Proc Natl Acad Sci U S A, 94, 14225-14230.  
8552646 A.Messerschmidt, and R.Wever (1996).
X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis.
  Proc Natl Acad Sci U S A, 93, 392-396.
PDB code: 1vnc
8624413 N.Kato, and M.Esaka (1996).
cDNA cloning and gene expression of ascorbate oxidase in tobacco.
  Plant Mol Biol, 30, 833-837.  
8710873 S.Karlin, and Z.Y.Zhu (1996).
Characterizations of diverse residue clusters in protein three-dimensional structures.
  Proc Natl Acad Sci U S A, 93, 8344-8349.  
8552644 Y.Chen, J.Inobe, V.K.Kuchroo, J.L.Baron, C.A.Janeway, and H.L.Weiner (1996).
Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells.
  Proc Natl Acad Sci U S A, 93, 388-391.  
8621708 Y.R.Kim, S.W.Yu, S.R.Lee, Y.Y.Hwang, and S.O.Kang (1996).
A heme-containing ascorbate oxidase from Pleurotus ostreatus.
  J Biol Chem, 271, 3105-3111.  
8534676 B.C.Berks, S.J.Ferguson, J.W.Moir, and D.J.Richardson (1995).
Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions.
  Biochim Biophys Acta, 1232, 97.  
7665560 K.X.Huang, I.Fujii, Y.Ebizuka, K.Gomi, and U.Sankawa (1995).
Molecular cloning and heterologous expression of the gene encoding dihydrogeodin oxidase, a multicopper blue enzyme from Aspergillus terreus.
  J Biol Chem, 270, 21495-21502.  
8055947 B.G.Malmström (1994).
Rack-induced bonding in blue-copper proteins.
  Eur J Biochem, 223, 711-718.  
8293473 C.Askwith, D.Eide, A.Van Ho, P.S.Bernard, L.Li, S.Davis-Kaplan, D.M.Sipe, and J.Kaplan (1994).
The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake.
  Cell, 76, 403-410.  
7984626 K.A.Magnus, B.Hazes, H.Ton-That, C.Bonaventura, J.Bonaventura, and W.G.Hol (1994).
Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences.
  Proteins, 19, 302-309.
PDB code: 1oxy
  7987226 T.M.Yi, and E.S.Lander (1994).
Recognition of related proteins by iterative template refinement (ITR).
  Protein Sci, 3, 1315-1328.  
8516338 J.J.Hill, J.O.Alben, and R.B.Gennis (1993).
Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli.
  Proc Natl Acad Sci U S A, 90, 5863-5867.  
  8495197 R.Durley, L.Chen, L.W.Lim, F.S.Mathews, and V.L.Davidson (1993).
Crystal structure analysis of amicyanin and apoamicyanin from Paracoccus denitrificans at 2.0 A and 1.8 A resolution.
  Protein Sci, 2, 739-752.
PDB codes: 1aaj 1aan
1438286 A.M.Kumar, and D.Söll (1992).
Arabidopsis alternative oxidase sustains Escherichia coli respiration.
  Proc Natl Acad Sci U S A, 89, 10842-10846.  
1330552 A.Messerschmidt, W.Steigemann, R.Huber, G.Lang, and P.M.Kroneck (1992).
X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini.
  Eur J Biochem, 209, 597-602.  
  1304887 E.Meyer (1992).
Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications.
  Protein Sci, 1, 1543-1562.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.