spacer

The two reactions compared are done so using a Tanimoto similarity score (for more information, please see the MACiE FAQ) for the bond changes only. The score maay range from 0 to 1 where 1 indicates that the two reactions are identical at the bond change level and 0 indicates that there are no bond changes in common.


Key

1.0-0.9 0.9-0.8 0.8-0.7 0.7-0.6 0.6-0.5 0.5-0.4 0.4-0.3 0.3-0.2 0.2-0.1 0.1-0.0 =0

Results for Comparison of M0222 and M0111

These two reactions have a combined similarity of 0.43


M0222

View
Comparison

M0111

View
EC 4.1.2.13
fructose-bisphosphate aldolase (Class I)
Class EC 1.4.7.1
glutamate synthase (ferredoxin)

Image of D-glyceraldehyde 3- phosphate

Image of glycerone phosphate

right arrow

Image of D-fructose 1,6-bisphosphate

D-glyceraldehyde 3- phosphate
C00118
CHEBI:59776
glycerone phosphate
C00111
CHEBI:57642
D-fructose 1,6-bisphosphate
C00354
CHEBI:49299
0.07

Image of L-glutamine

Image of proton

Image of reduced ferredoxin

Image of 2-oxoglutarate

right arrow

Image of oxidised ferredoxin

Image of L-glutamate

L-glutamine
C00064
CHEBI:58359
2 proton
C00080
CHEBI:24636
2 reduced ferredoxin
C00138
CHEBI:17513
2-oxoglutarate
C00026
CHEBI:16810
2 oxidised ferredoxin
C00139
CHEBI:17908
2 L-glutamate
C00025
CHEBI:29985

Catalytic CATH Codes

3.20.20.70

Catalytic CATH Codes

3.60.20.10
3.20.20.70

Active Site



0.21338

Active Site



Catalytic Residues

Type Number Chain Location of Function
Lys 146 A Side Chain
Ser 300 A Side Chain
Tyr 363 A Side Chain
Asp 33 A Side Chain
Lys 229 A Side Chain
Glu 187 A Side Chain
Glu 189 A Side Chain
0.2222

Catalytic Residues

Type Number Chain Location of Function
Cys 1 A Main Chain N Terminus
Side Chain
Arg 31 A Main Chain Carbonyl
Phe 207 A Main Chain Amide
Asn 227 A Side Chain
Gly 228 A Main Chain Amide
Glu 903 A Side Chain
Gln 969 A Side Chain
Lys 972 A Side Chain
Gln 978 A Main Chain Amide

Organic Cofactors

No Associated Organic Cofactors

Organic Cofactors

Type Identity Chain
FMN FMN 2508 A

Metal Cofactors

No Associated Metal Cofactors

Metal Cofactors

Type Het group Number Chain
iron F3S 2509 A

Reaction occurs across 10 steps

0.5738

Reaction occurs across 10 steps

Step 1
GIF of Reaction Step M0222.stg01

Lys229 attacks the carbonyl carbon of D-glyceraldehyde 3- phosphate in a nucleophilic addition.
0.14 Step 1
GIF of Reaction Step M0111.stg01

The N-terminus of Cys1 deprotonates deprotonates water, which deprotonates the thiol group of Cys1, initiating a nucleophilic attack on the amide carbon in an addition reaction.
Step 2
GIF of Reaction Step M0222.stg02

The oxyanion formed deprotonates the bound Lys229.
0.5 Step 2
GIF of Reaction Step M0111.stg02

The oxyanion initiates an elimination that cleaves ammonia from the bound L-glutamine substrate. Ammonia deprotonates water, which deprotonates the N-terminus of Cys1.
Step 3
GIF of Reaction Step M0222.stg03

Lys229 initiates an elimination of water, which gains an extra proton from Glu187.
0.33 Step 3
GIF of Reaction Step M0111.stg03

The N-terminus of Cys1 deprotonates water, which deprotonates another water that initiates a nucleophilic attack on the carbonyl carbon of the covalently bound intermediate in an addition reaction.
Step 4
GIF of Reaction Step M0222.stg04

The phosphate of the bound intermediate deprotonates water, which in turn deprotonates Tyr363.
0.4 Step 4
GIF of Reaction Step M0111.stg04

The oxyanion initiates an elimination that cleaves the C-S bond, the thiolate of Cys1 deprotonates water, which deprotonates the N-terminus of Cys1
Step 5
GIF of Reaction Step M0222.stg05

Tyr363 deprotonates the C1-H of the bound intermediate, initiating a double bond rearrangement that leaves Lys229 with a lone pair of electrons.
0.14 Step 5
GIF of Reaction Step M0111.stg05

Ammonia initiates a nucleophilic attack on the C2 carbonyl carbon of the 2-oxoglutarate substrate in an addition reaction. The oxyanion formed deprotonates the bound ammonium.
Step 6
GIF of Reaction Step M0222.stg06

Glu187 deprotonates water, which deprotonates a second water which deprotonates the phosphate of the bound intermediate.
0.15 Step 6
GIF of Reaction Step M0111.stg06

The amine initiates an elimination of the bound hydroxide as water, which deprotonates Lys972.
Step 7
GIF of Reaction Step M0222.stg07

Glycerone phosphate binds, displacing one of the water molecules. Lys229 initiates a nucleophilic addition of the bound intermediate to the glycerone phosphate. The formed oxyanion deprotonates Glu187.
0.27 Step 7
GIF of Reaction Step M0111.stg07

FMN eliminates a hydride ion, which adds to the C2 imine carbon in an addition reaction.
Step 8
GIF of Reaction Step M0222.stg08

Glu187 deprotonates water, which attacks the imine carbon of the covalenlty bound intermediate in a nucleophilic addition.
0.2 Step 8
GIF of Reaction Step M0111.stg08

Lys972 deprotonates water in an inferred step.
Step 9
GIF of Reaction Step M0222.stg09

Lys229 deprotonates the formed hydroxyl group, which initiates an elimination of the linear form of D-fructose 1,6-bisphosphate and neutral Lys229.
0.37 Step 9
GIF of Reaction Step M0111.stg09

Ferredoxin donates a single electron, which is transferred to FMN through an iron-sulfur cluster. FMN deprotonates water.
Step 10
GIF of Reaction Step M0222.stg10

Phosphate deprotonates hydroxyl, and the carbonyl oxygen re-protonates from Lys229, which in turn re-protonates from the phosphate, thus catalysing the ring closure of D-fructose 1,6-bisphosphate.
0 Step 10
GIF of Reaction Step M0111.stg10

A second ferredoxin donates a single electron, which is transferred to FMN through an iron-sulfur cluster, which regenerates the reduced form of FMN.

spacer
spacer