PDBsum entry 9aat

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase(aminotransferase) PDB id
Protein chains
401 a.a. *
PMP ×2
Waters ×620
* Residue conservation analysis
PDB id:
Name: Transferase(aminotransferase)
Title: X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase
Structure: Aspartate aminotransferase. Chain: a, b. Engineered: yes
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Organ: heart. Expressed in: unidentified. Expression_system_taxid: 32644
Biol. unit: Dimer (from PQS)
2.20Å     R-factor:   0.131    
Authors: C.A.Mcphalen,M.G.Vincent,J.N.Jansonius
Key ref: C.A.McPhalen et al. (1992). X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol, 225, 495-517. PubMed id: 1593633
02-Dec-91     Release date:   31-Oct-93    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P00508  (AATM_CHICK) -  Aspartate aminotransferase, mitochondrial
423 a.a.
401 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 1: E.C.  - Aspartate transaminase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate
+ 2-oxoglutarate
= oxaloacetate
+ L-glutamate
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Bound ligand (Het Group name = PMP) matches with 88.00% similarity
   Enzyme class 2: E.C.  - Kynurenine--oxoglutarate transaminase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Reaction: L-kynurenine + 2-oxoglutarate = 4-(2-aminophenyl)-2,4-dioxobutanoate + L-glutamate
+ 2-oxoglutarate
= 4-(2-aminophenyl)-2,4-dioxobutanoate
+ L-glutamate
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     mitochondrion   2 terms 
  Biological process     small molecule metabolic process   9 terms 
  Biochemical function     catalytic activity     8 terms  


J Mol Biol 225:495-517 (1992)
PubMed id: 1593633  
X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase.
C.A.McPhalen, M.G.Vincent, J.N.Jansonius.
The X-ray crystal structures of three forms of the enzyme aspartate aminotransferase (EC from chicken heart mitochondria have been refined by least-squares methods: holoenzyme with the co-factor pyridoxal-5'-phosphate bound at pH 7.5 (1.9 A resolution), holoenzyme with pyridoxal-5'-phosphate bound at pH 5.1 (2.3 A resolution) and holoenzyme with the co-factor pyridoxamine-5'-phosphate bound at pH 7.5 (2.2 A resolution). The crystallographic agreement factors [formula: see text] for the structures are 0.166, 0.130 and 0.131, respectively, for all data in the resolution range from 10.0 A to the limit of diffraction for each structure. The secondary, super-secondary and domain structures of the pyridoxal-phosphate holoenzyme at pH 7.5 are described in detail. The surface area of the interface between the monomer subunits of this dimeric alpha 2 protein is unusually large, indicating a very stable dimer. This is consistent with biochemical data. Both subunit and domain interfaces are relatively smooth compared with other proteins. The interactions of the protein with its co-factor are described and compared among the three structures. Observed changes in co-factor conformation may be related to spectral changes and the energetics of the catalytic reaction. Small but significant adjustments of the protein to changes in co-factor conformation are seen. These adjustments may be accommodated by small rigid-body shifts of secondary structural elements, and by packing defects in the protein core.

Literature references that cite this PDB file's key reference

  PubMed id Reference
20977429 Q.Han, H.Robinson, T.Cai, D.A.Tagle, and J.Li (2011).
Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV.
  Biosci Rep, 31, 323-332.
PDB codes: 3pd6 3pdb
19826765 Q.Han, T.Cai, D.A.Tagle, and J.Li (2010).
Structure, expression, and function of kynurenine aminotransferases in human and rodent brains.
  Cell Mol Life Sci, 67, 353-368.
PDB code: 3hlm
19368885 H.J.Chen, T.P.Ko, C.Y.Lee, N.C.Wang, and A.H.Wang (2009).
Structure, assembly, and mechanism of a PLP-dependent dodecameric L-aspartate beta-decarboxylase.
  Structure, 17, 517-529.
PDB codes: 2zy2 2zy3 2zy4 2zy5
18056995 Q.Han, H.Robinson, and J.Li (2008).
Crystal Structure of Human Kynurenine Aminotransferase II.
  J Biol Chem, 283, 3567-3573.
PDB codes: 2qlr 2r2n
18620547 Q.Han, T.Cai, D.A.Tagle, H.Robinson, and J.Li (2008).
Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II.
  Biosci Rep, 28, 205-215.
PDB code: 3dc1
18186649 Q.Han, Y.G.Gao, H.Robinson, and J.Li (2008).
Structural insight into the mechanism of substrate specificity of aedes kynurenine aminotransferase.
  Biochemistry, 47, 1622-1630.
PDB codes: 2r5c 2r5e
17300176 S.Lima, R.Khristoforov, C.Momany, and R.S.Phillips (2007).
Crystal structure of Homo sapiens kynureninase.
  Biochemistry, 46, 2735-2744.
PDB code: 2hzp
16328739 A.Berezov, M.J.McNeill, A.Iriarte, and M.Martinez-Carrion (2005).
Electron paramagnetic resonance and fluorescence studies of the conformation of aspartate aminotransferase bound to GroEL.
  Protein J, 24, 465-478.  
15889412 K.Hirotsu, M.Goto, A.Okamoto, and I.Miyahara (2005).
Dual substrate recognition of aminotransferases.
  Chem Rec, 5, 160-172.  
14761974 M.Goto, R.Omi, I.Miyahara, A.Hosono, H.Mizuguchi, H.Hayashi, H.Kagamiyama, and K.Hirotsu (2004).
Crystal structures of glutamine:phenylpyruvate aminotransferase from Thermus thermophilus HB8: induced fit and substrate recognition.
  J Biol Chem, 279, 16518-16525.
PDB codes: 1v2d 1v2e 1v2f
14534310 P.Storici, D.De Biase, F.Bossa, S.Bruno, A.Mozzarelli, C.Peneff, R.B.Silverman, and T.Schirmer (2004).
Structures of gamma-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5'-phosphate, and [2Fe-2S] cluster-containing enzyme, complexed with gamma-ethynyl-GABA and with the antiepilepsy drug vigabatrin.
  J Biol Chem, 279, 363-373.
PDB codes: 1ohv 1ohw 1ohy
12912902 G.Capitani, D.De Biase, C.Aurizi, H.Gut, F.Bossa, and M.G.Grütter (2003).
Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase.
  EMBO J, 22, 4027-4037.
PDB codes: 1pmm 1pmo
12488449 H.Hayashi, H.Mizuguchi, I.Miyahara, Y.Nakajima, K.Hirotsu, and H.Kagamiyama (2003).
Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis.
  J Biol Chem, 278, 9481-9488.
PDB codes: 1ix6 1ix7 1ix8
12723595 H.Kim, K.Ikegami, M.Nakaoka, M.Yagi, H.Shibata, and Y.Sawa (2003).
Characterization of aspartate aminotransferase from the cyanobacterium Phormidium lapideum.
  Biosci Biotechnol Biochem, 67, 490-498.  
12595727 J.K.Yang, C.Chang, S.J.Cho, J.Y.Lee, Y.G.Yu, S.H.Eom, and S.W.Suh (2003).
Crystallization and preliminary X-ray analysis of the Mj0684 gene product, a putative aspartate aminotransferase, from Methanococcus jannaschii.
  Acta Crystallogr D Biol Crystallogr, 59, 563-565.  
14674749 P.LeMagueres, H.Im, A.Dvorak, U.Strych, M.Benedik, and K.L.Krause (2003).
Crystal structure at 1.45 A resolution of alanine racemase from a pathogenic bacterium, Pseudomonas aeruginosa, contains both internal and external aldimine forms.
  Biochemistry, 42, 14752-14761.
PDB code: 1rcq
11983713 A.Artigues, A.Iriarte, and M.Martinez-Carrion (2002).
Binding to chaperones allows import of a purified mitochondrial precursor into mitochondria.
  J Biol Chem, 277, 25047-25055.  
  15803651 D.E.Ward, Vos, and J.van der Oost (2002).
Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus.
  Archaea, 1, 133-141.  
12235163 E.B.Kuettner, R.Hilgenfeld, and M.S.Weiss (2002).
The active principle of garlic at atomic resolution.
  J Biol Chem, 277, 46402-46407.
PDB code: 1lk9
11967363 E.Deu, K.A.Koch, and J.F.Kirsch (2002).
The role of the conserved Lys68*:Glu265 intersubunit salt bridge in aspartate aminotransferase kinetics: multiple forced covariant amino acid substitutions in natural variants.
  Protein Sci, 11, 1062-1073.  
11807243 T.R.Schneider (2002).
A genetic algorithm for the identification of conformationally invariant regions in protein molecules.
  Acta Crystallogr D Biol Crystallogr, 58, 195-208.  
11877399 V.Trivedi, A.Gupta, V.R.Jala, P.Saravanan, G.S.Rao, N.A.Rao, H.S.Savithri, and H.S.Subramanya (2002).
Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism.
  J Biol Chem, 277, 17161-17169.
PDB codes: 1kkj 1kkp 1kl1 1kl2
11309139 A.H.Liepman, and L.J.Olsen (2001).
Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana.
  Plant J, 25, 487-498.  
11933245 H.Kagamiyama, and H.Hayashi (2001).
Release of enzyme strain during catalysis reduces the activation energy barrier.
  Chem Rec, 1, 385-394.  
11148029 H.Mizuguchi, H.Hayashi, K.Okada, I.Miyahara, K.Hirotsu, and H.Kagamiyama (2001).
Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase.
  Biochemistry, 40, 353-360.
PDB codes: 1g4v 1g4x 1g7w 1g7x
11294630 K.Haruyama, T.Nakai, I.Miyahara, K.Hirotsu, H.Mizuguchi, H.Hayashi, and H.Kagamiyama (2001).
Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme.
  Biochemistry, 40, 4633-4644.
PDB codes: 1gew 1gex 1gey
11264579 N.Yennawar, J.Dunbar, M.Conway, S.Hutson, and G.Farber (2001).
The structure of human mitochondrial branched-chain aminotransferase.
  Acta Crystallogr D Biol Crystallogr, 57, 506-515.
PDB codes: 1ekf 1ekp 1ekv
11063567 D.M.Szebenyi, X.Liu, I.A.Kriksunov, P.J.Stover, and D.J.Thiel (2000).
Structure of a murine cytoplasmic serine hydroxymethyltransferase quinonoid ternary complex: evidence for asymmetric obligate dimers.
  Biochemistry, 39, 13313-13323.
PDB code: 1eji
10785402 L.Birolo, M.L.Tutino, B.Fontanella, C.Gerday, K.Mainolfi, S.Pascarella, G.Sannia, F.Vinci, and G.Marino (2000).
Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling.
  Eur J Biochem, 267, 2790-2802.  
11112527 M.M.Islam, H.Hayashi, H.Mizuguchi, and H.Kagamiyama (2000).
The substrate activation process in the catalytic reaction of Escherichia coli aromatic amino acid aminotransferase.
  Biochemistry, 39, 15418-15428.  
10691982 R.Talwar, J.R.Jagath, N.A.Rao, and H.S.Savithri (2000).
His230 of serine hydroxymethyltransferase facilitates the proton abstraction step in catalysis.
  Eur J Biochem, 267, 1441-1446.  
10642176 S.P.Webster, D.Alexeev, D.J.Campopiano, R.M.Watt, M.Alexeeva, L.Sawyer, and R.L.Baxter (2000).
Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies.
  Biochemistry, 39, 516-528.
PDB codes: 1dj9 1dje
10079072 A.A.Morollo, G.A.Petsko, and D.Ringe (1999).
Structure of a Michaelis complex analogue: propionate binds in the substrate carboxylate site of alanine racemase.
  Biochemistry, 38, 3293-3301.
PDB code: 2sfp
9930977 A.Okamoto, S.Ishii, K.Hirotsu, and H.Kagamiyama (1999).
The active site of Paracoccus denitrificans aromatic amino acid aminotransferase has contrary properties: flexibility and rigidity.
  Biochemistry, 38, 1176-1184.
PDB codes: 2ay1 2ay2 2ay3 2ay4 2ay5 2ay6 2ay7 2ay8 2ay9
10387080 J.N.Scarsdale, G.Kazanina, S.Radaev, V.Schirch, and H.T.Wright (1999).
Crystal structure of rabbit cytosolic serine hydroxymethyltransferase at 2.8 A resolution: mechanistic implications.
  Biochemistry, 38, 8347-8358.
PDB code: 1cj0
10223296 K.A.Denessiouk, A.I.Denesyuk, J.V.Lehtonen, T.Korpela, and M.S.Johnson (1999).
Common structural elements in the architecture of the cofactor-binding domains in unrelated families of pyridoxal phosphate-dependent enzymes.
  Proteins, 35, 250-261.  
10450084 S.Hayward (1999).
Structural principles governing domain motions in proteins.
  Proteins, 36, 425-435.  
10029535 T.Nakai, K.Okada, S.Akutsu, I.Miyahara, S.Kawaguchi, R.Kato, S.Kuramitsu, and K.Hirotsu (1999).
Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate.
  Biochemistry, 38, 2413-2424.
PDB codes: 1bjw 1bkg
10417420 T.P.Ko, S.P.Wu, W.Z.Yang, H.Tsai, and H.S.Yuan (1999).
Crystallization and preliminary crystallographic analysis of the Escherichia coli tyrosine aminotransferase.
  Acta Crystallogr D Biol Crystallogr, 55, 1474-1477.
PDB code: 3tat
9837879 A.Artigues, D.L.Crawford, A.Iriarte, and M.Martinez-Carrion (1998).
Divergent Hsc70 binding properties of mitochondrial and cytosolic aspartate aminotransferase. Implications for their segregation to different cellular compartments.
  J Biol Chem, 273, 33130-33134.  
9675237 A.Azzariti, R.A.Vacca, S.Giannattasio, R.S.Merafina, E.Marra, and S.Doonan (1998).
Kinetic properties and thermal stabilities of mutant forms of mitochondrial aspartate aminotransferase.
  Biochim Biophys Acta, 1386, 29-38.  
9575209 A.S.Tarun, and A.Theologis (1998).
Complementation analysis of mutants of 1-aminocyclopropane- 1-carboxylate synthase reveals the enzyme is a dimer with shared active sites.
  J Biol Chem, 273, 12509-12514.  
9468492 B.Lain, A.Yañez, A.Iriarte, and M.Martinez-Carrion (1998).
Aminotransferase variants as probes for the role of the N-terminal region of a mature protein in mitochondrial precursor import and processing.
  J Biol Chem, 273, 4406-4415.  
  9655342 C.J.Jeffery, T.Barry, S.Doonan, G.A.Petsko, and D.Ringe (1998).
Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.
  Protein Sci, 7, 1380-1387.
PDB code: 1yaa
9461576 C.Torella, J.R.Mattingly, A.Artigues, A.Iriarte, and M.Martinez-Carrion (1998).
Insight into the conformation of protein folding intermediate(s) trapped by GroEL.
  J Biol Chem, 273, 3915-3925.  
9538014 D.Peisach, D.M.Chipman, P.W.Van Ophem, J.M.Manning, and D.Ringe (1998).
Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.
  Biochemistry, 37, 4958-4967.
PDB codes: 3daa 4daa
9790670 H.Hayashi, H.Mizuguchi, and H.Kagamiyama (1998).
The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis.
  Biochemistry, 37, 15076-15085.  
9914259 J.N.Jansonius (1998).
Structure, evolution and action of vitamin B6-dependent enzymes.
  Curr Opin Struct Biol, 8, 759-769.  
9722549 J.R.Mattingly, C.Torella, A.Iriarte, and M.Martinez-Carrion (1998).
Conformation of aspartate aminotransferase isozymes folding under different conditions probed by limited proteolysis.
  J Biol Chem, 273, 23191-23202.  
  9605314 K.Qu, D.L.Martin, and C.E.Lawrence (1998).
Motifs and structural fold of the cofactor binding site of human glutamate decarboxylase.
  Protein Sci, 7, 1092-1105.  
9753690 S.B.Renwick, K.Snell, and U.Baumann (1998).
The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy.
  Structure, 6, 1105-1116.
PDB code: 1bj4
9660802 S.Kawaguchi, and S.Kuramitsu (1998).
Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases.
  J Biol Chem, 273, 18353-18364.  
  9761478 S.Pascarella, S.Angelaccio, R.Contestabile, S.Delle Fratte, M.Di Salvo, and F.Bossa (1998).
The structure of serine hydroxymethyltransferase as modeled by homology and validated by site-directed mutagenesis.
  Protein Sci, 7, 1976-1982.  
9521707 S.Sun, R.F.Zabinski, and M.D.Toney (1998).
Reactions of alternate substrates demonstrate stereoelectronic control of reactivity in dialkylglycine decarboxylase.
  Biochemistry, 37, 3865-3875.  
9576913 T.Yano, S.Oue, and H.Kagamiyama (1998).
Directed evolution of an aspartate aminotransferase with new substrate specificities.
  Proc Natl Acad Sci U S A, 95, 5511-5515.  
9792664 Y.Nobe, S.Kawaguchi, H.Ura, T.Nakai, K.Hirotsu, R.Kato, and S.Kuramitsu (1998).
The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8.
  J Biol Chem, 273, 29554-29564.  
9201992 A.Artigues, A.Iriarte, and M.Martinez-Carrion (1997).
Refolding intermediates of acid-unfolded mitochondrial aspartate aminotransferase bind to hsp70.
  J Biol Chem, 272, 16852-16861.  
9354624 H.Hayashi, and H.Kagamiyama (1997).
Transient-state kinetics of the reaction of aspartate aminotransferase with aspartate at low pH reveals dual routes in the enzyme-substrate association process.
  Biochemistry, 36, 13558-13569.  
9249049 J.R.Jagath, B.Sharma, B.Bhaskar, A.Datta, N.A.Rao, and H.S.Savithri (1997).
Importance of the amino terminus in maintenance of oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase.
  Eur J Biochem, 247, 372-379.  
  9300500 P.Dominici, P.S.Moore, S.Castellani, M.Bertoldi, and C.B.Voltattorni (1997).
Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation.
  Protein Sci, 6, 2007-2015.  
9211866 S.Rhee, M.M.Silva, C.C.Hyde, P.H.Rogers, C.M.Metzler, D.E.Metzler, and A.Arnone (1997).
Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate.
  J Biol Chem, 272, 17293-17302.
PDB codes: 1ajr 1ajs
8952476 A.G.von Stosch (1996).
Aspartate aminotransferase complexed with erythro-beta-hydroxyaspartate: crystallographic and spectroscopic identification of the carbinolamine intermediate.
  Biochemistry, 35, 15260-15268.
PDB code: 1ivr
  8935163 H.J.Adcock, P.J.Gaskin, P.N.Shaw, P.H.Teesdale-Spittle, and L.D.Buckberry (1996).
Novel sources of mammalian C-S lyase activity.
  J Pharm Pharmacol, 48, 150-153.  
8856080 P.Kasper, M.Sterk, P.Christen, and H.Gehring (1996).
Molecular-dynamics simulation of domain movements in aspartate aminotransferase.
  Eur J Biochem, 240, 751-755.  
8665890 Z.Marković-Housley, T.Schirmer, E.Hohenester, A.R.Khomutov, R.M.Khomutov, M.Y.Karpeisky, E.Sandmeier, P.Christen, and J.N.Jansonius (1996).
Crystal structures and solution studies of oxime adducts of mitochondrial aspartate aminotransferase.
  Eur J Biochem, 236, 1025-1032.
PDB codes: 1oxo 1oxp
7559589 B.Lain, A.Iriarte, J.R.Mattingly, J.I.Moreno, and M.Martinez-Carrion (1995).
Structural features of the precursor to mitochondrial aspartate aminotransferase responsible for binding to hsp70.
  J Biol Chem, 270, 24732-24739.  
  7663340 C.Momany, R.Ghosh, and M.L.Hackert (1995).
Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
  Protein Sci, 4, 849-854.  
8749853 D.Frishman, and P.Argos (1995).
Knowledge-based protein secondary structure assignment.
  Proteins, 23, 566-579.  
7588727 L.Birolo, E.Sandmeier, P.Christen, and R.A.John (1995).
The roles of Tyr70 and Tyr225 in aspartate aminotransferase assessed by analysing the effects of mutations on the multiple reactions of the substrate analogue serine o-sulphate.
  Eur J Biochem, 232, 859-864.  
  7670372 N.V.Grishin, M.A.Phillips, and E.J.Goldsmith (1995).
Modeling of the spatial structure of eukaryotic ornithine decarboxylases.
  Protein Sci, 4, 1291-1304.  
  7543842 P.Klatt, K.Schmidt, D.Lehner, O.Glatter, H.P.Bächinger, and B.Mayer (1995).
Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer.
  EMBO J, 14, 3687-3695.  
7851426 R.A.Vacca, P.Christen, V.N.Malashkevich, J.N.Jansonius, and E.Sandmeier (1995).
Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.
  Eur J Biochem, 227, 481-487.
PDB code: 1ari
8112347 F.W.Alexander, E.Sandmeier, P.K.Mehta, and P.Christen (1994).
Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families.
  Eur J Biochem, 219, 953-960.  
7809054 M.F.White, J.Vasquez, S.F.Yang, and J.F.Kirsch (1994).
Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms.
  Proc Natl Acad Sci U S A, 91, 12428-12432.  
  7757001 N.V.Grishin, and M.A.Phillips (1994).
The subunit interfaces of oligomeric enzymes are conserved to a similar extent to the overall protein sequences.
  Protein Sci, 3, 2455-2458.  
7925461 S.Delle Fratte, S.Iurescia, S.Angelaccio, F.Bossa, and V.Schirch (1994).
The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase.
  Eur J Biochem, 225, 395-401.  
  8003988 S.Pascarella, and F.Bossa (1994).
Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes.
  Protein Sci, 3, 701-705.  
7922041 Y.Harpaz, M.Gerstein, and C.Chothia (1994).
Volume changes on protein folding.
  Structure, 2, 641-649.  
8436109 M.Ziak, J.Jäger, V.N.Malashkevich, H.Gehring, R.Jaussi, J.N.Jansonius, and P.Christen (1993).
Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties.
  Eur J Biochem, 211, 475-484.  
8513804 P.K.Mehta, T.I.Hale, and P.Christen (1993).
Aminotransferases: demonstration of homology and division into evolutionary subgroups.
  Eur J Biochem, 214, 549-561.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.