spacer
spacer

PDBsum entry 6pgo

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein/inhibitor PDB id
6pgo

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
160 a.a.
152 a.a.
Ligands
GDP ×2
OJ1 ×2
Metals
_MG ×2
Waters ×163
PDB id:
6pgo
Name: Signaling protein/inhibitor
Title: Crystal structure of human kras g12c covalently bound to a phthalazine inhibitor
Structure: Gtpase kras. Chain: a, b. Synonym: k-ras 2,ki-ras,c-k-ras,c-ki-ras. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Variant: var_006839 g12c. Gene: kras, kras2, rask2. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008
Resolution:
1.60Å     R-factor:   0.218     R-free:   0.231
Authors: C.Mohr
Key ref: B.A.Lanman et al. (2020). Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. J Med Chem, 63, 52-65. PubMed id: 31820981 DOI: 10.1021/acs.jmedchem.9b01180
Date:
24-Jun-19     Release date:   25-Dec-19    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P01116  (RASK_HUMAN) -  GTPase KRas from Homo sapiens
Seq:
Struc:
189 a.a.
160 a.a.*
Protein chain
Pfam   ArchSchema ?
P01116  (RASK_HUMAN) -  GTPase KRas from Homo sapiens
Seq:
Struc:
189 a.a.
152 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 19 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.3.6.5.2  - small monomeric GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
+ H2O
=
GDP
Bound ligand (Het Group name = GDP)
corresponds exactly
+ phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/acs.jmedchem.9b01180 J Med Chem 63:52-65 (2020)
PubMed id: 31820981  
 
 
Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors.
B.A.Lanman, J.R.Allen, J.G.Allen, A.K.Amegadzie, K.S.Ashton, S.K.Booker, J.J.Chen, N.Chen, M.J.Frohn, G.Goodman, D.J.Kopecky, L.Liu, P.Lopez, J.D.Low, V.Ma, A.E.Minatti, T.T.Nguyen, N.Nishimura, A.J.Pickrell, A.B.Reed, Y.Shin, A.C.Siegmund, N.A.Tamayo, C.M.Tegley, M.C.Walton, H.L.Wang, R.P.Wurz, M.Xue, K.C.Yang, P.Achanta, M.D.Bartberger, J.Canon, L.S.Hollis, J.D.McCarter, C.Mohr, K.Rex, A.Y.Saiki, T.San Miguel, L.P.Volak, K.H.Wang, D.A.Whittington, S.G.Zech, J.R.Lipford, V.J.Cee.
 
  ABSTRACT  
 
KRASG12C has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRASG12C to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRASG12C inhibitor currently in phase I clinical trials (NCT03600883).
 

 

spacer

spacer