spacer
spacer

PDBsum entry 6oqw

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Membrane protein PDB id
6oqw

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
173 a.a.
510 a.a.
153 a.a.
136 a.a.
284 a.a.
458 a.a.
(+ 4 more) 77 a.a.
266 a.a.
Ligands
ATP ×3
ADP ×3
PO4
Metals
_MG ×5
PDB id:
6oqw
Name: Membrane protein
Title: E. Coli atp synthase state 3a
Structure: Atp synthase subunit delta. Chain: w. Synonym: atp synthase f(1) sector subunit delta,f-type atpase subunit delta,f-atpase subunit delta. Engineered: yes. Atp synthase subunit alpha. Chain: c, b, a. Synonym: atp synthase f1 sector subunit alpha,f-atpase subunit alpha. Engineered: yes.
Source: Escherichia coli. Organism_taxid: 562. Gene: atph, hmpref1611_00658. Expressed in: escherichia coli. Expression_system_taxid: 562. Escherichia coli 2-427-07_s4_c3. Organism_taxid: 1444266. Gene: atpa, ad31_4476. Gene: atpf, ad31_4478.
Authors: A.G.Stewart,M.Sobti,J.L.Walshe
Key ref: M.Sobti et al. (2020). Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch. Nat Commun, 11, 2615. PubMed id: 32457314 DOI: 10.1038/s41467-020-16387-2
Date:
29-Apr-19     Release date:   24-Jun-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P0ABA4  (ATPD_ECOLI) -  ATP synthase subunit delta from Escherichia coli (strain K12)
Seq:
Struc:
177 a.a.
173 a.a.*
Protein chains
P0ABB0  (ATPA_ECOLI) -  ATP synthase subunit alpha from Escherichia coli (strain K12)
Seq:
Struc:
513 a.a.
510 a.a.
Protein chains
P0ABA0  (ATPF_ECOLI) -  ATP synthase subunit b from Escherichia coli (strain K12)
Seq:
Struc:
156 a.a.
153 a.a.*
Protein chain
P0A6E6  (ATPE_ECOLI) -  ATP synthase epsilon chain from Escherichia coli (strain K12)
Seq:
Struc:
139 a.a.
136 a.a.
Protein chain
P0ABA6  (ATPG_ECOLI) -  ATP synthase gamma chain from Escherichia coli (strain K12)
Seq:
Struc:
287 a.a.
284 a.a.*
Protein chains
P0ABB4  (ATPB_ECOLI) -  ATP synthase subunit beta from Escherichia coli (strain K12)
Seq:
Struc:
460 a.a.
458 a.a.*
Protein chains
P68699  (ATPL_ECOLI) -  ATP synthase subunit c from Escherichia coli (strain K12)
Seq:
Struc:
79 a.a.
77 a.a.
Protein chain
P0AB98  (ATP6_ECOLI) -  ATP synthase subunit a from Escherichia coli (strain K12)
Seq:
Struc:
271 a.a.
266 a.a.
Key:    Secondary structure
* PDB and UniProt seqs differ at 7 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains C, B, A, F, E, D: E.C.7.1.2.2  - H(+)-transporting two-sector ATPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O + 4 H+(in) = ADP + phosphate + 5 H+(out)
ATP
Bound ligand (Het Group name = ATP)
corresponds exactly
+ H2O
+ 4 × H(+)(in)
= ADP
+
phosphate
Bound ligand (Het Group name = PO4)
corresponds exactly
+ 5 × H(+)(out)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/s41467-020-16387-2 Nat Commun 11:2615 (2020)
PubMed id: 32457314  
 
 
Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch.
M.Sobti, J.L.Walshe, D.Wu, R.Ishmukhametov, Y.C.Zeng, C.V.Robinson, R.M.Berry, A.G.Stewart.
 
  ABSTRACT  
 
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
 

 

spacer

spacer