spacer
spacer

PDBsum entry 6oop

Go to PDB code: 
protein ligands metals links
Transport protein PDB id
6oop

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
392 a.a.
Ligands
KHJ
Metals
_PR ×2
Waters ×55
PDB id:
6oop
Name: Transport protein
Title: Protein b
Structure: Multidrug transporter mdfa. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: a9r57_05385, bjj90_17655. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.80Å     R-factor:   not given    
Authors: M.Lu
Key ref: H.H.Wu et al. (2019). Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition. Commun Biol, 2, 210. PubMed id: 31240248 DOI: 10.1038/s42003-019-0446-y
Date:
23-Apr-19     Release date:   04-Sep-19    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0AEY8  (MDFA_ECOLI) -  Multidrug transporter MdfA from Escherichia coli (strain K12)
Seq:
Struc:
410 a.a.
392 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/s42003-019-0446-y Commun Biol 2:210 (2019)
PubMed id: 31240248  
 
 
Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition.
H.H.Wu, J.Symersky, M.Lu.
 
  ABSTRACT  
 
MdfA is a prototypical H+-coupled multidrug transporter that is characterized by extraordinarily broad substrate specificity. The involvement of specific H-bonds in MdfA-drug interactions and the simplicity of altering the substrate specificity of MdfA contradict the promiscuous nature of multidrug recognition, presenting a baffling conundrum. Here we show the X-ray structures of MdfA variant I239T/G354E in complexes with three electrically different ligands, determined at resolutions up to 2.2 Å. Our structures reveal that I239T/G354E interacts with these compounds differently from MdfA and that I239T/G354E possesses two discrete, non-overlapping substrate-binding sites. Our results shed new light on the molecular design of multidrug-binding and protonation sites and highlight the importance of often-neglected, long-range charge-charge interactions in multidrug recognition. Beyond helping to solve the ostensible conundrum of multidrug recognition, our findings suggest the mechanistic difference between substrate and inhibitor for any H+-dependent multidrug transporter, which may open new vistas on curtailing efflux-mediated multidrug resistance.
 

 

spacer

spacer