 |
PDBsum entry 6f8c
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Oxidoreductase
|
PDB id
|
|
|
|
6f8c
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
ACS Chem Biol
13:1021-1028
(2018)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure-Based Engineering of Steroidogenic CYP260A1 for Stereo- and Regioselective Hydroxylation of Progesterone.
|
|
Y.Khatri,
I.K.Jóźwik,
M.Ringle,
I.A.Ionescu,
M.Litzenburger,
M.C.Hutter,
A.W.H.Thunnissen,
R.Bernhardt.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The production of regio- and stereoselectively hydroxylated steroids is of high
pharmaceutical interest and can be achieved by cytochrome P450-based
biocatalysts. CYP260A1 from Sorangium cellulosum strain So ce56 catalyzes
hydroxylation of C19 or C21 steroids at the very unique 1α-position. However,
the conversion of progesterone (PROG) by CYP260A1 is very unselective. In order
to improve its selectivity we applied a semirational protein engineering
approach, resulting in two different, highly regio- and stereoselective mutants
by replacing a single serine residue (S276) of the substrate recognition site 5
with an asparagine or isoleucine. The S276N mutant converted PROG predominantly
into 1α-hydroxy-PROG, while the S276I mutant led to 17α-hydroxy-PROG. We
solved the high-resolution crystal structures of the PROG-bound S276N and S276I
mutants, which revealed two different binding modes of PROG in the active site.
The orientations were consistent with the exclusive 1α- (pro-1α binding mode)
and 17α-hydroxylation (pro-17α-binding mode) of S276N and S276I, respectively.
We observed that water-mediated hydrogen bonds contribute to the stabilization
of the polar C3 and C17 substituents of PROG. Both binding modes of PROG may be
stabilized in the wild-type enzyme. The change in regioselectivity is mainly
driven by destabilizing the alternative binding mode due to steric hindrance and
hydrogen bond disruption, caused by the mutations of Ser276. Thus, for the first
time, the change in the selectivity of cytochrome P450-mediated steroid
hydroxylation created by rational mutagenesis can be explained by the obtained
3D structures of the substrate-bound mutants, providing the basis for further
experiments to engineer the biocatalyst toward novel steroid hydroxylation
positions.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
');
}
}
 |