spacer
spacer

PDBsum entry 5bug

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
5bug

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
314 a.a.
Ligands
TLA ×4
Waters ×751
PDB id:
5bug
Name: Hydrolase
Title: Crystal structure of human phosphatase pten oxidized by h2o2
Structure: Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase pten. Chain: a, b, c, d. Fragment: pten wt 14-351 delta 286-309. Synonym: mutated in multiple advanced cancers 1,phosphatase and tensin homolog. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pten, mmac1, tep1. Expressed in: trichoplusia ni. Expression_system_taxid: 7111.
Resolution:
2.40Å     R-factor:   0.177     R-free:   0.211
Authors: C.-U.Lee,D.Bier,S.Hennig,T.N.Grossmann
Key ref: C.U.Lee et al. (2015). Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes. Angew Chem Int Ed Engl, 54, 13796-13800. PubMed id: 26418532 DOI: 10.1002/anie.201506338
Date:
03-Jun-15     Release date:   07-Oct-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P60484  (PTEN_HUMAN) -  Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN from Homo sapiens
Seq:
Struc:
403 a.a.
314 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.3.1.3.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.3.1.3.16  - protein-serine/threonine phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. O-phospho-L-seryl-[protein] + H2O = L-seryl-[protein] + phosphate
2. O-phospho-L-threonyl-[protein] + H2O = L-threonyl-[protein] + phosphate
O-phospho-L-seryl-[protein]
+ H2O
= L-seryl-[protein]
+ phosphate
O-phospho-L-threonyl-[protein]
+ H2O
= L-threonyl-[protein]
+ phosphate
   Enzyme class 3: E.C.3.1.3.48  - protein-tyrosine-phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: O-phospho-L-tyrosyl-[protein] + H2O = L-tyrosyl-[protein] + phosphate
O-phospho-L-tyrosyl-[protein]
+ H2O
= L-tyrosyl-[protein]
+ phosphate
   Enzyme class 4: E.C.3.1.3.67  - phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5-trisphosphate) + H2O = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5- bisphosphate) + phosphate
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5-trisphosphate)
+ H2O
= 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5- bisphosphate)
+ phosphate
      Cofactor: Mg(2+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1002/anie.201506338 Angew Chem Int Ed Engl 54:13796-13800 (2015)
PubMed id: 26418532  
 
 
Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes.
C.U.Lee, G.Hahne, J.Hanske, T.Bange, D.Bier, C.Rademacher, S.Hennig, T.N.Grossmann.
 
  ABSTRACT  
 
PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2 O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions.
 

 

spacer

spacer