spacer
spacer

PDBsum entry 4cgt

Go to PDB code: 
protein metals links
Glycosyltransferase PDB id
4cgt
Jmol
Contents
Protein chain
678 a.a. *
Metals
_CA ×2
Waters ×160
* Residue conservation analysis
PDB id:
4cgt
Name: Glycosyltransferase
Title: Deletion mutant delta(145-150), f151d of cyclodextrin glycosyltransferase
Structure: Cyclodextrin glycosyltransferase. Chain: a. Synonym: cyclodextrin glucanotransferase, cgtase, 1,4- alpha-d-glucan\:1,4-alpha-d-glucopyranosyltransferase (cyclizing). Engineered: yes. Mutation: yes
Source: Bacillus circulans. Organism_taxid: 1397. Strain: 8. Cellular_location: extracellular. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.60Å     R-factor:   0.194     R-free:   0.272
Authors: G.Parsiegla,G.E.Schulz
Key ref:
G.Parsiegla et al. (1998). Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the gamma-cyclodextrin production. Eur J Biochem, 255, 710-717. PubMed id: 9738912 DOI: 10.1046/j.1432-1327.1998.2550710.x
Date:
06-Jun-98     Release date:   12-Aug-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P30920  (CDGT1_BACCI) -  Cyclomaltodextrin glucanotransferase
Seq:
Struc:
 
Seq:
Struc:
718 a.a.
678 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.4.1.19  - Cyclomaltodextrin glucanotransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Degrades starch to cyclodextrins by formation of a 1,4-alpha-D- glucosidic bond.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   1 term 
  Biological process     carbohydrate metabolic process   1 term 
  Biochemical function     catalytic activity     8 terms  

 

 
DOI no: 10.1046/j.1432-1327.1998.2550710.x Eur J Biochem 255:710-717 (1998)
PubMed id: 9738912  
 
 
Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the gamma-cyclodextrin production.
G.Parsiegla, A.K.Schmidt, G.E.Schulz.
 
  ABSTRACT  
 
Bacterial cyclodextrin glycosyltransferases use starch to produce cyclic maltooligosaccharides (cyclodextrins) which are of interest in various applications. The cyclization reaction gives rise to a spectrum of ring sizes consisting of predominantly six to eight glucosyl units. Using the enzyme from Bacillus circulans strain no. 8, binding studies have been performed with several substrates and analogues. The observed binding modes differ in detail, but agree in general with data on homologous enzymes. Based on these binding studies, two mutations were designed that changed the production spectrum from the predominant product beta-cyclodextrin of the wild-type enzyme towards gamma-cyclodextrin, which is of practical interest because it is rare and can encapsulate larger nonpolar compounds.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Covalent structure of Hoxa consisting of glucosyl, 4­amino­6­deoxyglucosyl and oxiran­pseudo­glucosyl units (compound W46H of Fa. Hoechst). Hoxa inhibits A­amylases and also CGTase. The depicted orientation is unusual [45], but it corresponds to the binding mode at CGTase when viewed from the solvent, with CGTase in the usual orientation with its TIM barrel pointing upward. This orientation is kept throughout all figures.
Figure 3.
Fig. 3. Interaction of glucose and maltose bound to CGTase mutant D229A. The ligated subsites are 1, 1¢, and 2¢ (left to right). All polar interactions are specified. For nonpolar interactions with the pyranose rings, we followed [43] ; these are indicated by sliced bars.
 
  The above figures are reprinted by permission from the Federation of European Biochemical Societies: Eur J Biochem (1998, 255, 710-717) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19763564 H.Leemhuis, R.M.Kelly, and L.Dijkhuizen (2010).
Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications.
  Appl Microbiol Biotechnol, 85, 823-835.  
19682075 C.Christiansen, M.Abou Hachem, S.Janecek, A.Viksø-Nielsen, A.Blennow, and B.Svensson (2009).
The carbohydrate-binding module family 20--diversity, structure, and function.
  FEBS J, 276, 5006-5029.  
19367403 R.M.Kelly, L.Dijkhuizen, and H.Leemhuis (2009).
The evolution of cyclodextrin glucanotransferase product specificity.
  Appl Microbiol Biotechnol, 84, 119-133.  
18704190 S.Jemli, E.Ben Messaoud, S.Ben Mabrouk, and S.Bejar (2008).
The cyclodextrin glycosyltransferase of Paenibacillus pabuli US132 strain: molecular characterization and overproduction of the recombinant enzyme.
  J Biomed Biotechnol, 2008, 692573.  
17891389 Z.Li, M.Wang, F.Wang, Z.Gu, G.Du, J.Wu, and J.Chen (2007).
gamma-Cyclodextrin: a review on enzymatic production and applications.
  Appl Microbiol Biotechnol, 77, 245-255.  
16012834 K.Hirano, T.Ishihara, S.Ogasawara, H.Maeda, K.Abe, T.Nakajima, and Y.Yamagata (2006).
Molecular cloning and characterization of a novel gamma-CGTase from alkalophilic Bacillus sp.
  Appl Microbiol Biotechnol, 70, 193-201.  
15630515 Q.Qi, and W.Zimmermann (2005).
Cyclodextrin glucanotransferase: from gene to applications.
  Appl Microbiol Biotechnol, 66, 475-485.  
14660599 K.S.Bak-Jensen, G.André, T.E.Gottschalk, G.Paës, V.Tran, and B.Svensson (2004).
Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1.
  J Biol Chem, 279, 10093-10102.  
14993702 M.Akita, Y.Hatada, Y.Hidaka, Y.Ohta, M.Takada, Y.Nakagawa, K.Ogawa, T.Nakakuki, S.Ito, and K.Horikoshi (2004).
Crystallization and preliminary X-ray study of gamma-type cyclodextrin glycosyltransferase from Bacillus clarkii.
  Acta Crystallogr D Biol Crystallogr, 60, 586-587.  
12752453 H.B.Fritzsche, T.Schwede, and G.E.Schulz (2003).
Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92.
  Eur J Biochem, 270, 2332-2341.
PDB code: 1h3g
12492486 H.Leemhuis, B.W.Dijkstra, and L.Dijkhuizen (2003).
Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase.
  Eur J Biochem, 270, 155-162.  
11257505 E.A.MacGregor, S.Janecek, and B.Svensson (2001).
Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes.
  Biochim Biophys Acta, 1546, 1.  
11288183 J.C.Uitdehaag, B.A.van der Veen, L.Dijkhuizen, R.Elber, and B.W.Dijkstra (2001).
Enzymatic circularization of a malto-octaose linear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase.
  Proteins, 43, 327-335.  
11282590 Y.Terada, H.Sanbe, T.Takaha, S.Kitahata, K.Koizumi, and S.Okada (2001).
Comparative study of the cyclization reactions of three bacterial cyclomaltodextrin glucanotransferases.
  Appl Environ Microbiol, 67, 1453-1460.  
10869182 J.C.Uitdehaag, G.J.van Alebeek, B.A.van Der Veen, L.Dijkhuizen, and B.W.Dijkstra (2000).
Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.
  Biochemistry, 39, 7772-7780.
PDB codes: 1eo5 1eo7
10866815 V.Monchois, M.Vignon, P.C.Escalier, B.Svensson, and R.R.Russell (2000).
Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization.
  Eur J Biochem, 267, 4127-4136.  
10574960 J.C.Uitdehaag, K.H.Kalk, B.A.van Der Veen, L.Dijkhuizen, and B.W.Dijkstra (1999).
The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a gamma-cyclodextrin-CGTase complex at 1.8-A resolution.
  J Biol Chem, 274, 34868-34876.
PDB code: 1d3c
  10585964 K.Horikoshi (1999).
Alkaliphiles: some applications of their products for biotechnology.
  Microbiol Mol Biol Rev, 63, 735.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.