spacer
spacer

PDBsum entry 4c4z

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
4c4z

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
318 a.a.
Ligands
W9L ×2
Waters ×602
PDB id:
4c4z
Name: Hydrolase
Title: Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with a8
Structure: Bifunctional epoxide hydrolase 2. Chain: a, b. Fragment: epoxide hydroxylase domain residues 230-555. Synonym: bifunctional epoxide hydroxylase 2, cytosolic epoxide hydrolase 2, ceh, epoxide hydratase, soluble epoxide hydrolase, seh, lipid-phosphate phosphatase. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.06Å     R-factor:   0.222     R-free:   0.253
Authors: J.Pilger,A.Mazur,P.Monecke,H.Schreuder,B.Elshorst,T.Langer, A.Schiffer,I.Krimm,M.Wegstroth,D.Lee,G.Hessler,K.-U.Wendt,S.Becker, C.Griesinger
Key ref: J.Pilger et al. (2015). A combination of spin diffusion methods for the determination of protein-ligand complex structural ensembles. Angew Chem Int Ed Engl, 54, 6511-6515. PubMed id: 25877959 DOI: 10.1002/anie.201500671
Date:
09-Sep-13     Release date:   01-Oct-14    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P34913  (HYES_HUMAN) -  Bifunctional epoxide hydrolase 2 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
555 a.a.
318 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.3.1.3.76  - lipid-phosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: (9S,10S)-10-hydroxy-9-(phosphooxy)octadecanoate + H2O = (9S,10S)-9,10- dihydroxyoctadecanoate + phosphate
(9S,10S)-10-hydroxy-9-(phosphooxy)octadecanoate
+ H2O
= (9S,10S)-9,10- dihydroxyoctadecanoate
+ phosphate
      Cofactor: Mg(2+)
   Enzyme class 3: E.C.3.3.2.10  - soluble epoxide hydrolase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: an epoxide + H2O = an ethanediol
epoxide
+ H2O
= ethanediol
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1002/anie.201500671 Angew Chem Int Ed Engl 54:6511-6515 (2015)
PubMed id: 25877959  
 
 
A combination of spin diffusion methods for the determination of protein-ligand complex structural ensembles.
J.Pilger, A.Mazur, P.Monecke, H.Schreuder, B.Elshorst, S.Bartoschek, T.Langer, A.Schiffer, I.Krimm, M.Wegstroth, D.Lee, G.Hessler, K.U.Wendt, S.Becker, C.Griesinger.
 
  ABSTRACT  
 
Structure-based drug design (SBDD) is a powerful and widely used approach to optimize affinity of drug candidates. With the recently introduced INPHARMA method, the binding mode of small molecules to their protein target can be characterized even if no spectroscopic information about the protein is known. Here, we show that the combination of the spin-diffusion-based NMR methods INPHARMA, trNOE, and STD results in an accurate scoring function for docking modes and therefore determination of protein-ligand complex structures. Applications are shown on the model system protein kinase A and the drug targets glycogen phosphorylase and soluble epoxide hydrolase (sEH). Multiplexing of several ligands improves the reliability of the scoring function further. The new score allows in the case of sEH detecting two binding modes of the ligand in its binding site, which was corroborated by X-ray analysis.
 

 

spacer

spacer