spacer
spacer

PDBsum entry 3w3a

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
3w3a

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 0 more) 577 a.a.
(+ 0 more) 457 a.a.
210 a.a.
100 a.a.
Ligands
ADP ×4
PDB id:
3w3a
Name: Hydrolase
Title: Crystal structure of v1-atpase at 3.9 angstrom resolution
Structure: V-type atp synthase alpha chain. Chain: a, b, c, i, j, k. Fragment: subunit a. Synonym: v-atpase subunit a. V-type atp synthase beta chain. Chain: d, e, f, l, m, n. Fragment: subunit b. Synonym: v-atpase subunit b. V-type atp synthase subunit d.
Source: Thermus thermophilus. Organism_taxid: 300852. Strain: hb8 / atcc 27634 / dsm 579. Strain: hb8 / atcc 27634 / dsm 579
Resolution:
3.90Å     R-factor:   0.328     R-free:   0.381
Authors: Y.Nagamatsu,K.Takeda,T.Kuranaga,N.Numoto,K.Miki
Key ref: Y.Nagamatsu et al. (2013). Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus. J Mol Biol, 425, 2699-2708. PubMed id: 23639357 DOI: 10.1016/j.jmb.2013.04.022
Date:
14-Dec-12     Release date:   15-May-13    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q56403  (VATA_THET8) -  V-type ATP synthase alpha chain from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
 
Seq:
Struc:
578 a.a.
577 a.a.
Protein chains
Pfam   ArchSchema ?
Q56404  (VATB_THET8) -  V-type ATP synthase beta chain from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
478 a.a.
457 a.a.
Protein chains
Pfam   ArchSchema ?
O87880  (VATD_THET8) -  V-type ATP synthase subunit D from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
223 a.a.
210 a.a.
Protein chains
Pfam   ArchSchema ?
P74903  (VATF_THET8) -  V-type ATP synthase subunit F from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
104 a.a.
100 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: Chains A, B, C, I, J, K: E.C.7.1.2.2  - H(+)-transporting two-sector ATPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O + 4 H+(in) = ADP + phosphate + 5 H+(out)
ATP
+ H2O
+ 4 × H(+)(in)
=
ADP
Bound ligand (Het Group name = ADP)
corresponds exactly
+ phosphate
+ 5 × H(+)(out)
   Enzyme class 3: Chains D, E, F, G, H, L, M, N, O, P: E.C.3.6.3.14  - Transferred entry: 7.1.2.2.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O + H+(In) = ADP + phosphate + H+(Out)
ATP
+ H(2)O
+ 4 × H(+)(In)
=
ADP
Bound ligand (Het Group name = ADP)
corresponds exactly
+ phosphate
+ 5 × H(+)(Out)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.jmb.2013.04.022 J Mol Biol 425:2699-2708 (2013)
PubMed id: 23639357  
 
 
Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus.
Y.Nagamatsu, K.Takeda, T.Kuranaga, N.Numoto, K.Miki.
 
  ABSTRACT  
 
V-type ATPase (V-ATPase) is one of the rotary ATPase complexes that mediate energy conversion between the chemical energy of ATP and the ion gradient across the membrane through a rotary catalytic mechanism. Because V-ATPase has structural features similar to those of well-studied F-type ATPase, the structure is expected to highlight the common essence of the torque generation of rotary ATPases. Here, we report a complete model of the extra-membrane domain of the V-ATPase (V1-ATPase) of a thermophilic bacterium, Thermus thermophilus, consisting of three A subunits, three B subunits, one D subunit, and one F subunit. The X-ray structure at 3.9Å resolution provides detailed information about the interactions between A3B3 and DF subcomplexes as well as interactions among the respective subunits, which are defined by the properties of side chains. Asymmetry at the intersubunit interfaces was detected from the structural differences among the three AB pairs in the different reaction states, while the large interdomain motion in the catalytic A subunits was not observed unlike F1 from various species and V1 from Enterococcus hirae. Asymmetry is mainly realized by rigid-body rearrangements of the relative position between A and B subunits. This is consistent with the previous observations by the high-resolution electron microscopy for the whole V-ATPase complexes. Therefore, our result plausibly implies that the essential motion for the torque generation is not the large interdomain movement of the catalytic subunits but the rigid-body rearrangement of subunits.
 

 

spacer

spacer