spacer
spacer

PDBsum entry 3mef

Go to PDB code: 
protein links
Gene regulation PDB id
3mef

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
69 a.a. *
* Residue conservation analysis
PDB id:
3mef
Name: Gene regulation
Title: Major cold-shock protein from escherichia coli solution nmr structure
Structure: Protein (cold-shock protein a). Chain: a. Fragment: full length protein. Synonym: cspa, cs7.4. Engineered: yes
Source: Escherichia coli. Organism_taxid: 469008. Strain: bl21(de3). Gene: u60035. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Other_details: pcr-generated gene
NMR struc: 16 models
Authors: W.Feng,R.Tejero,G.T.Montelione
Key ref:
W.Feng et al. (1998). Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry, 37, 10881-10896. PubMed id: 9692981 DOI: 10.1021/bi980269j
Date:
09-Oct-98     Release date:   14-Oct-98    
Supersedes: 1mef
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A9X9  (CSPA_ECOLI) -  Cold shock protein CspA from Escherichia coli (strain K12)
Seq:
Struc:
70 a.a.
69 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1021/bi980269j Biochemistry 37:10881-10896 (1998)
PubMed id: 9692981  
 
 
Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
W.Feng, R.Tejero, D.E.Zimmerman, M.Inouye, G.T.Montelione.
 
  ABSTRACT  
 
The major cold-shock protein (CspA) from Escherichia coli is a single-stranded nucleic acid-binding protein that is produced in response to cold stress. We have previously reported its overall chain fold as determined by NMR spectroscopy [Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S. D., Inouye, M., and Montelione, G. T. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 5114-5118]. Here we describe the complete analysis of 1H, 13C, and 15N resonance assignments for CspA, together with a refined solution NMR structure based on 699 conformational constraints and an analysis of backbone dynamics based on 15N relaxation rate measurements. An extensive set of triple-resonance NMR experiments for obtaining the backbone and side chain resonance assignments were carried out on uniformly 13C- and 15N-enriched CspA. Using a subset of these triple-resonance experiments, the computer program AUTOASSIGN provided automatic analysis of sequence-specific backbone N, Calpha, C', HN, Halpha, and side chain Cbeta resonance assignments. The remaining 1H, 13C, and 15N resonance assignments for CspA were then obtained by manual analysis of additional NMR spectra. Dihedral angle constraints and stereospecific methylene Hbeta resonance assignments were determined using a new conformational grid search program, HYPER, and used together with longer-range constraints as input for three-dimensional structure calculations. The resulting solution NMR structure of CspA is a well-defined five-stranded beta-barrel with surface-exposed aromatic groups that form a single-stranded nucleic acid-binding site. Backbone dynamics of CspA have also been characterized by 15N T1, T2, and heteronuclear 15N-1H NOE measurements and analyzed using the extended Lipari-Szabo formalism. These dynamic measurements indicate a molecular rotational correlation time taum of 4.88 +/- 0.04 ns and provide evidence for fast time scale (taue < 500 ps) dynamics in surface loops and motions on the microsecond to millisecond time scale within the proposed nucleic acid-binding epitope.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20091073 G.Panicker, N.Mojib, T.Nakatsuji, J.Aislabie, and A.K.Bej (2010).
Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3.
  Extremophiles, 14, 171-183.  
21221937 J.H.Uh, Y.H.Jung, Y.K.Lee, H.K.Lee, and H.Im (2010).
Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228.
  J Microbiol, 48, 798-802.  
20656860 S.T.Vaiphei, L.Mao, T.Shimazu, J.H.Park, and M.Inouye (2010).
Use of amino acids as inducers for high-level protein expression in the single-protein production system.
  Appl Environ Microbiol, 76, 6063-6068.  
20734145 Y.Tang, W.M.Schneider, Y.Shen, S.Raman, M.Inouye, D.Baker, M.J.Roth, and G.T.Montelione (2010).
Fully automated high-quality NMR structure determination of small (2)H-enriched proteins.
  J Struct Funct Genomics, 11, 223-232.
PDB code: 2l15
19596808 D.A.Rowe-Magnus (2009).
Integrase-directed recovery of functional genes from genomic libraries.
  Nucleic Acids Res, 37, e118.  
19564956 K.M.Guardino, S.R.Sheftic, R.E.Slattery, and A.T.Alexandrescu (2009).
Relative Stabilities of Conserved and Non-Conserved Structures in the OB-Fold Superfamily.
  Int J Mol Sci, 10, 2412-2430.  
19840122 S.Phadtare, and K.Severinov (2009).
Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family.
  Genes Cells, 14, 1227-1239.  
17661445 E.Watson, W.M.Matousek, E.L.Irimies, and A.T.Alexandrescu (2007).
Partially folded states of staphylococcal nuclease highlight the conserved structural hierarchy of OB-fold proteins.
  Biochemistry, 46, 9484-9494.  
17545280 L.Giaquinto, P.M.Curmi, K.S.Siddiqui, A.Poljak, E.DeLong, S.DasSarma, and R.Cavicchioli (2007).
Structure and function of cold shock proteins in archaea.
  J Bacteriol, 189, 5738-5748.  
17384193 S.Phadtare, T.Kazakov, M.Bubunenko, D.L.Court, T.Pestova, and K.Severinov (2007).
Transcription antitermination by translation initiation factor IF1.
  J Bacteriol, 189, 4087-4093.  
16956971 M.Zeeb, K.E.Max, U.Weininger, C.Löw, H.Sticht, and J.Balbach (2006).
Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution.
  Nucleic Acids Res, 34, 4561-4571.
PDB code: 2f52
16214801 S.Phadtare, and K.Severinov (2005).
Nucleic acid melting by Escherichia coli CspE.
  Nucleic Acids Res, 33, 5583-5590.  
15671167 S.de Bono, L.Riechmann, E.Girard, R.L.Williams, and G.Winter (2005).
A segment of cold shock protein directs the folding of a combinatorial protein.
  Proc Natl Acad Sci U S A, 102, 1396-1401.
PDB code: 2bh8
14739320 A.Jung, C.Bamann, W.Kremer, H.R.Kalbitzer, and E.Brunner (2004).
High-temperature solution NMR structure of TmCsp.
  Protein Sci, 13, 342-350.  
15162492 A.T.Alexandrescu (2004).
Strategy for supplementing structure calculations using limited data with hydrophobic distance restraints.
  Proteins, 56, 117-129.  
14627742 J.M.Aramini, Y.J.Huang, J.R.Cort, S.Goldsmith-Fischman, R.Xiao, L.Y.Shih, C.K.Ho, J.Liu, B.Rost, B.Honig, M.A.Kennedy, T.B.Acton, and G.T.Montelione (2003).
Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii.
  Protein Sci, 12, 2823-2830.
PDB code: 1ny4
12493834 M.Zeeb, and J.Balbach (2003).
Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization.
  Protein Sci, 12, 112-123.  
12547426 N.Lan, G.T.Montelione, and M.Gerstein (2003).
Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level.
  Curr Opin Chem Biol, 7, 44-54.  
14531859 S.Phadtare, J.Hwang, K.Severinov, and M.Inouye (2003).
CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima.
  Genes Cells, 8, 801-810.  
  12537566 M.P.Joachimiak, and F.E.Cohen (2002).
JEvTrace: refinement and variations of the evolutionary trace in JAVA.
  Genome Biol, 3, RESEARCH0077.  
11861653 S.F.Falsone, M.Weichel, R.Crameri, M.Breitenbach, and A.J.Kungl (2002).
Unfolding and double-stranded DNA binding of the cold shock protein homologue Cla h 8 from Cladosporium herbarum.
  J Biol Chem, 277, 16512-16516.  
11756430 S.Phadtare, M.Inouye, and K.Severinov (2002).
The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells.
  J Biol Chem, 277, 7239-7245.  
12324471 S.Phadtare, S.Tyagi, M.Inouye, and K.Severinov (2002).
Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells.
  J Biol Chem, 277, 46706-46711.  
11514676 A.T.Alexandrescu, D.R.Snyder, and F.Abildgaard (2001).
NMR of hydrogen bonding in cold-shock protein A and an analysis of the influence of crystallographic resolution on comparisons of hydrogen bond lengths.
  Protein Sci, 10, 1856-1868.  
11567094 D.M.Vu, K.L.Reid, H.M.Rodriguez, and L.M.Gregoret (2001).
Examination of the folding of E. coli CspA through tryptophan substitutions.
  Protein Sci, 10, 2028-2036.  
11326073 J.E.Shea, and C.L.Brooks (2001).
From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding.
  Annu Rev Phys Chem, 52, 499-535.  
11260474 K.Yamanaka, W.Zheng, E.Crooke, Y.H.Wang, and M.Inouye (2001).
CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli.
  Mol Microbiol, 39, 1572-1584.  
11509379 S.Dellerue, A.J.Petrescu, J.C.Smith, and M.C.Bellissent-Funel (2001).
Radially softening diffusive motions in a globular protein.
  Biophys J, 81, 1666-1676.  
11322871 W.Kremer, B.Schuler, S.Harrieder, M.Geyer, W.Gronwald, C.Welker, R.Jaenicke, and H.R.Kalbitzer (2001).
Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima.
  Eur J Biochem, 268, 2527-2539.
PDB code: 1g6p
11069676 N.Wang, K.Yamanaka, and M.Inouye (2000).
Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1.
  Mol Microbiol, 38, 526-534.  
10960094 S.Derzelle, B.Hallet, K.P.Francis, T.Ferain, J.Delcour, and P.Hols (2000).
Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum.
  J Bacteriol, 182, 5105-5113.  
  10716181 V.A.Jaravine, K.Rathgeb-Szabo, and A.T.Alexandrescu (2000).
Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.
  Protein Sci, 9, 290-301.  
10542339 K.Yamanaka, M.Inouye, and S.Inouye (1999).
Identification and characterization of five cspA homologous genes from Myxococcus xanthus.
  Biochim Biophys Acta, 1447, 357-365.  
  10515916 K.Yamanaka, M.Mitta, and M.Inouye (1999).
Mutation analysis of the 5' untranslated region of the cold shock cspA mRNA of Escherichia coli.
  J Bacteriol, 181, 6284-6291.  
10559248 M.M.Lopez, K.Yutani, and G.I.Makhatadze (1999).
Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition.
  J Biol Chem, 274, 33601-33608.  
  10049393 N.Wang, K.Yamanaka, and M.Inouye (1999).
CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock.
  J Bacteriol, 181, 1603-1609.  
10322168 S.Phadtare, J.Alsina, and M.Inouye (1999).
Cold-shock response and cold-shock proteins.
  Curr Opin Microbiol, 2, 175-180.  
10476034 S.Phadtare, and M.Inouye (1999).
Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli.
  Mol Microbiol, 33, 1004-1014.  
10200963 W.Bae, S.Phadtare, K.Severinov, and M.Inouye (1999).
Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein.
  Mol Microbiol, 31, 1429-1441.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer