spacer
spacer

PDBsum entry 3c0h

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
3c0h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
300 a.a. *
Ligands
AMP ×2
Waters ×258
* Residue conservation analysis
PDB id:
3c0h
Name: Transferase
Title: Cask cam-kinase domain- amppnp complex, p1 form
Structure: Peripheral plasma membrane protein cask. Chain: a, b. Fragment: cam-kinase domain. Synonym: hcask, calcium/calmodulin-dependent serine protein kinase, lin-2 homolog. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: cask. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Resolution:
2.30Å     R-factor:   0.191     R-free:   0.239
Authors: M.C.Wahl
Key ref:
K.Mukherjee et al. (2008). CASK Functions as a Mg2+-independent neurexin kinase. Cell, 133, 328-339. PubMed id: 18423203 DOI: 10.1016/j.cell.2008.02.036
Date:
20-Jan-08     Release date:   29-Apr-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O14936  (CSKP_HUMAN) -  Peripheral plasma membrane protein CASK from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
926 a.a.
300 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.11.1  - non-specific serine/threonine protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
2. L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
L-seryl-[protein]
+ ATP
= O-phospho-L-seryl-[protein]
Bound ligand (Het Group name = AMP)
matches with 85.19% similarity
+ ADP
+ H(+)
L-threonyl-[protein]
+ ATP
= O-phospho-L-threonyl-[protein]
Bound ligand (Het Group name = AMP)
matches with 85.19% similarity
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.cell.2008.02.036 Cell 133:328-339 (2008)
PubMed id: 18423203  
 
 
CASK Functions as a Mg2+-independent neurexin kinase.
K.Mukherjee, M.Sharma, H.Urlaub, G.P.Bourenkov, R.Jahn, T.C.Südhof, M.C.Wahl.
 
  ABSTRACT  
 
CASK is a unique MAGUK protein that contains an N-terminal CaM-kinase domain besides the typical MAGUK domains. The CASK CaM-kinase domain is presumed to be a catalytically inactive pseudokinase because it lacks the canonical DFG motif required for Mg2+ binding that is thought to be indispensable for kinase activity. Here we show, however, that CASK functions as an active protein kinase even without Mg2+ binding. High-resolution crystal structures reveal that the CASK CaM-kinase domain adopts a constitutively active conformation that binds ATP and catalyzes phosphotransfer without Mg2+. The CASK CaM-kinase domain phosphorylates itself and at least one physiological interactor, the synaptic protein neurexin-1, to which CASK is recruited via its PDZ domain. Thus, our data indicate that CASK combines the scaffolding activity of MAGUKs with an unusual kinase activity that phosphorylates substrates recuited by the scaffolding activity. Moreover, our study suggests that other pseudokinases (10% of the kinome) could also be catalytically active.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of the CASK CaM-Kinase Domain
(A and B) Ribbon diagrams depicting the overall fold of the CASK CaM-kinase domain in a complex with 3′-AMP (orthorhombic form, A; see Figure S3 for the triclinic form) or AMPPNP (triclinic form, B).
(C and D) Ribbon diagrams of rat CaMKI (C; Goldberg et al., 1996; PDB ID: 1A06) and rat DAPK1 in a complex with Mn^2+-AMPPNP (D; Tereshko et al., 2001; PDB ID: 1IG1).
All structures are shown in the same orientation with the N-terminal lobes (dark gray) at the top and the C-terminal lobes (light gray) at the bottom. Specific structural elements are color-coded: portion of the glycine-rich loop (GR-loop) = brown; catalytic loop (C-loop) = yellow; D/GFG of the Mg^2+ binding loop = orange (the third residue is disordered in the CaMKI structure); activation segment = green; C-terminal Ca^2+/CaM-binding segment (CaM-segment) = red. Bound nucleotides in (A) (3′-AMP), (B) (5′-AMP portion of AMPPNP), and (D) (AMPPNP) are shown in ball-and-sticks.
Figure 7.
Figure 7. Model of Neurexin Phosphorylation by CASK
Neurexin (Nx) and neuroligin (NL) are thought to interact extracellularly with each other across the synaptic cleft and to associate intracellularly with the MAGUKs CASK and PSD-95, respectively. CASK is recruited to the cytosolic C-tail of neurexin via the CASK PDZ domain and phosphorylates the neurexin C-terminal tail. Protein 4.1, which binds the C-tail of neurexin as well as CASK, nucleates actin filaments, modulating the presynaptic cytoskeleton. The red indicator depicts the inhibition of CASK CaM-kinase activity due to an increase in cytosolic divalent cations.
 
  The above figures are reprinted by permission from Cell Press: Cell (2008, 133, 328-339) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22781900 C.Adrain, and M.Freeman (2012).
New lives for old: evolution of pseudoenzyme function illustrated by iRhoms.
  Nat Rev Mol Cell Biol, 13, 489-498.  
21841788 D.Ungureanu, J.Wu, T.Pekkala, Y.Niranjan, C.Young, O.N.Jensen, C.F.Xu, T.A.Neubert, R.C.Skoda, S.R.Hubbard, and O.Silvennoinen (2011).
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling.
  Nat Struct Mol Biol, 18, 971-976.  
21265894 E.B.Madsen, M.Antolín-Llovera, C.Grossmann, J.Ye, S.Vieweg, A.Broghammer, L.Krusell, S.Radutoiu, O.N.Jensen, J.Stougaard, and M.Parniske (2011).
Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5.
  Plant J, 65, 404-417.  
20971646 S.S.Taylor, and A.P.Kornev (2011).
Protein kinases: evolution of dynamic regulatory proteins.
  Trends Biochem Sci, 36, 65-77.  
20585391 A.Dusa, C.Mouton, C.Pecquet, M.Herman, and S.N.Constantinescu (2010).
JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors.
  PLoS One, 5, e11157.  
20029458 A.Hackett, P.S.Tarpey, A.Licata, J.Cox, A.Whibley, J.Boyle, C.Rogers, J.Grigg, M.Partington, R.E.Stevenson, J.Tolmie, J.R.Yates, G.Turner, M.Wilson, A.P.Futreal, M.Corbett, M.Shaw, J.Gecz, F.L.Raymond, M.R.Stratton, C.E.Schwartz, and F.E.Abidi (2010).
CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes.
  Eur J Hum Genet, 18, 544-552.  
20077512 E.D.Scheeff, H.L.Axelrod, M.D.Miller, H.J.Chiu, A.M.Deacon, I.A.Wilson, and G.Manning (2010).
Genomics, evolution, and crystal structure of a new family of bacterial spore kinases.
  Proteins, 78, 1470-1482.
PDB code: 2q83
21074407 E.Zeqiraj, and D.M.van Aalten (2010).
Pseudokinases-remnants of evolution or key allosteric regulators?
  Curr Opin Struct Biol, 20, 772-781.  
20351256 F.Shi, S.E.Telesco, Y.Liu, R.Radhakrishnan, and M.A.Lemmon (2010).
ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.
  Proc Natl Acad Sci U S A, 107, 7692-7697.
PDB code: 3lmg
19901021 G.Bereta, B.Wang, P.D.Kiser, W.Baehr, G.F.Jang, and K.Palczewski (2010).
A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1.
  J Biol Chem, 285, 1899-1908.  
21124998 L.Kaufman, M.Ayub, and J.B.Vincent (2010).
The genetic basis of non-syndromic intellectual disability: a review.
  J Neurodev Disord, 2, 182-209.  
20827300 M.Maydan, P.C.McDonald, J.Sanghera, J.Yan, C.Rallis, S.Pinchin, G.E.Hannigan, L.J.Foster, D.Ish-Horowicz, M.P.Walsh, and S.Dedhar (2010).
Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3beta) phosphorylation.
  PLoS One, 5, e12356.  
19781660 Q.Sun, and G.M.Kelly (2010).
Post-translational modification of CASK leads to its proteasome-dependent degradation.
  Int J Biochem Cell Biol, 42, 90-97.  
20421461 S.S.Taylor, and A.P.Kornev (2010).
Yet another "active" pseudokinase, Erb3.
  Proc Natl Acad Sci U S A, 107, 8047-8048.  
19141276 A.P.Kornev, and S.S.Taylor (2009).
Pseudokinases: functional insights gleaned from structure.
  Structure, 17, 5-7.  
19104498 A.S.Shaw, and E.L.Filbert (2009).
Scaffold proteins and immune-cell signalling.
  Nat Rev Immunol, 9, 47-56.  
19141289 E.D.Scheeff, J.Eswaran, G.Bunkoczi, S.Knapp, and G.Manning (2009).
Structure of the Pseudokinase VRK3 Reveals a Degraded Catalytic Site, a Highly Conserved Kinase Fold, and a Putative Regulatory Binding Site.
  Structure, 17, 128-138.
PDB codes: 2jii 2v62
19892943 E.Zeqiraj, B.M.Filippi, M.Deak, D.R.Alessi, and D.M.van Aalten (2009).
Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation.
  Science, 326, 1707-1711.
PDB code: 2wtk
19513107 E.Zeqiraj, B.M.Filippi, S.Goldie, I.Navratilova, J.Boudeau, M.Deak, D.R.Alessi, and D.M.van Aalten (2009).
ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.
  PLoS Biol, 7, e1000126.
PDB code: 3gni
19200522 G.Piluso, F.D'Amico, V.Saccone, E.Bismuto, I.L.Rotundo, M.Di Domenico, S.Aurino, C.E.Schwartz, G.Neri, and V.Nigro (2009).
A missense mutation in CASK causes FG syndrome in an Italian family.
  Am J Hum Genet, 84, 162-177.  
20005845 K.Fukuda, S.Gupta, K.Chen, C.Wu, and J.Qin (2009).
The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions.
  Mol Cell, 36, 819-830.
PDB codes: 3kmu 3kmw
19495554 K.H.Biswas, A.R.Shenoy, A.Dutta, and S.S.Visweswariah (2009).
The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions.
  J Mol Evol, 68, 587-602.  
19286558 M.Bayer, T.Nawy, C.Giglione, M.Galli, T.Meinnel, and W.Lukowitz (2009).
Paternal control of embryonic patterning in Arabidopsis thaliana.
  Science, 323, 1485-1488.  
  19895258 M.H.Rider, E.Waelkens, R.Derua, and D.Vertommen (2009).
Fulfilling the Krebs and Beavo criteria for studying protein phosphorylation in the era of mass spectrometry-driven kinome research.
  Arch Physiol Biochem, 115, 298-310.  
20007378 N.Jura, Y.Shan, X.Cao, D.E.Shaw, and J.Kuriyan (2009).
Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3.
  Proc Natl Acad Sci U S A, 106, 21608-21613.
PDB code: 3kex
19567877 S.B.Cheng, S.A.Amici, X.Q.Ren, S.B.McKay, M.W.Treuil, J.M.Lindstrom, J.Rao, and R.Anand (2009).
Presynaptic targeting of alpha4beta 2 nicotinic acetylcholine receptors is regulated by neurexin-1beta.
  J Biol Chem, 284, 23251-23259.  
19197235 W.Qiu, A.Wernimont, K.Tang, S.Taylor, V.Lunin, M.Schapira, S.Fentress, R.Hui, and L.D.Sibley (2009).
Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii.
  EMBO J, 28, 969-979.
PDB codes: 3byv 3dzo
19847910 Y.P.Hsueh (2009).
Calcium/calmodulin-dependent serine protein kinase and mental retardation.
  Ann Neurol, 66, 438-443.  
18923512 T.C.Südhof (2008).
Neuroligins and neurexins link synaptic function to cognitive disease.
  Nature, 455, 903-911.  
18843295 V.Pena, A.Rozov, P.Fabrizio, R.Lührmann, and M.C.Wahl (2008).
Structure and function of an RNase H domain at the heart of the spliceosome.
  EMBO J, 27, 2929-2940.
PDB codes: 3e9l 3e9o 3e9p
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer