spacer
spacer

PDBsum entry 3b5l

Go to PDB code: 
protein ligands links
Hydrolase PDB id
3b5l
Jmol
Contents
Protein chain
198 a.a. *
Ligands
SO4 ×2
NH4 ×2
Waters ×174
* Residue conservation analysis
PDB id:
3b5l
Name: Hydrolase
Title: Crystal structure of a novel engineered retroaldolase: ra-61
Structure: Endoxylanase. Chain: b. Engineered: yes
Source: Artificial gene. Organism_taxid: 32630. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: computationally designed based on the struct thermophilic b-1,4-xylanase from nonomuraea flexuosa
Resolution:
1.80Å     R-factor:   0.206     R-free:   0.248
Authors: B.L.Stoddard,L.A.Doyle
Key ref:
L.Jiang et al. (2008). De novo computational design of retro-aldol enzymes. Science, 319, 1387-1391. PubMed id: 18323453 DOI: 10.1126/science.1152692
Date:
26-Oct-07     Release date:   22-Jan-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q8GMV7  (Q8GMV7_9ACTO) -  Endo-1,4-beta-xylanase
Seq:
Struc:
344 a.a.
198 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 11 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.8  - Endo-1,4-beta-xylanase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endohydrolysis of 1,4-beta-D-xylosidic linkages in xylans.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     carbohydrate metabolic process   1 term 
  Biochemical function     hydrolase activity, hydrolyzing O-glycosyl compounds     1 term  

 

 
DOI no: 10.1126/science.1152692 Science 319:1387-1391 (2008)
PubMed id: 18323453  
 
 
De novo computational design of retro-aldol enzymes.
L.Jiang, E.A.Althoff, F.R.Clemente, L.Doyle, D.Röthlisberger, A.Zanghellini, J.L.Gallaher, J.L.Betker, F.Tanaka, C.F.Barbas, D.Hilvert, K.N.Houk, B.L.Stoddard, D.Baker.
 
  ABSTRACT  
 
The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Retro-aldol reaction and active-site motifs. (A) The retro-aldol reaction. (B) General description of the aldol reaction pathway with a nucleophilic lysine and general acid-base chemistry. Several of the proton transfer steps are left out for brevity. (C) Active-site motifs with quantum mechanically optimized structures (23). (Top left) Motif I. Two lysines are positioned nearby one another to lower the pK[a] of the nucleophilic lysine, and a Lys-Asp dyad acts as the base to deprotonate the hydroxyl group. (Bottom left) Motif II. The catalytic lysine is buried in a hydrophobic environment to lower its pK[a] to make it a more potent nucleophile, and a tyrosine functions as a general acid or base. HB, hydrogen-bond. (Top right) Motif III. The catalytic lysine, analogous to motif II, is placed in a hydrophobic pocket to alter its pK[a], and a His-Asp dyad serves as a general base similar to the catalytic unit commonly observed in the serine proteases (24). (Bottom right) Motif IV. The catalytic lysine is again positioned in a hydrophobic environment. Additionally, an explicitly modeled bound water molecule is placed such that it forms a hydrogen bond with the carbinolamine hydroxyl during its formation, aids in the water elimination step, and deprotonates the β-alcohol at the carbon-carbon bond–breaking step. A hydrogen-bond donor/acceptor, such as Ser, Thr, or Tyr, is placed to position the water molecule in a tetrahedral geometry with the β-alcohol and the carbinolamine hydroxyl. The proton-abstracting ability of the water molecule is enhanced by a second hydrogen bond with a base residue. We incorporated, where possible, additional hydrogen-bonding interactions to stabilize the carbinolamine hydroxyl group and an aromatic side chain to optimally pack along the planar aromatic moiety of the substrate.
Figure 4.
Fig. 4. Structures of designed enzymes. (A to C) Examples of designmodels for active designs highlighting groups important for catalysis. The nucleophilic imine-forming lysine is in orange, the TS model is in yellow, the hydrogen-bonding groups are in light green, and the catalytic water is shown explicitly. The designed hydrophobic binding site for the aromatic portion of the TS model is indicated by the gray mesh. (A) RA60 (catalytic motif IV, jelly-roll scaffold). A designed hydrophobic pocket encloses the aromatic portion of the substrate and packs the aliphatic portion of the imine-forming Lys^48. A designed hydrogen-bonding network positions the bridging water molecule and the composite TS. (B) RA46 (catalytic motif IV, TIM-barrel scaffold). Tyr^83 and Ser^210 position the bridging water molecule, which facilitates the proton shuffling required in active site IV. (C) RA45 (catalytic motif IV, TIM-barrel scaffold). The bridging water is hydrogen-bonded by Ser^211 and Glu^233; replacing the Glu^233 with Thr decreases catalytic activity threefold (Fig. 3A). (D and E) Overlay of design model (purple) on x-ray crystal structure (green). Designed amino acid side chains are shown in stick representation, and the TS model in the design is shown in gray. (D) The 2.2 Å crystal structure of the S210A variant of RA22 (catalytic motif III, TIM-barrel scaffold). The C root mean square deviation (RMSD) between the design model and crystal structure is 0.62 Å, and the heavy-atom RMSD in the active site is 1.10 Å. (E) 1.8 Å crystal structure of M48K variant of RA61 (catalytic motif IV, jelly-roll scaffold). Design-crystal structure C RMSD is 0.46 Å, and heavy-atom RMSD is 0.8 Å. The small differences in the high-resolution details of packing around the active site are due to slight movements in some of the loops above the binding pocket and two rotamer changes in RA61 that may reflect the absence of a TS analog in the crystal structure.
 
  The above figures are reprinted by permission from the AAAs: Science (2008, 319, 1387-1391) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22596318 A.L.Slusarczyk, A.Lin, and R.Weiss (2012).
Foundations for the design and implementation of synthetic genetic circuits.
  Nat Rev Genet, 13, 406-420.  
23135467 N.Koga, R.Tatsumi-Koga, G.Liu, R.Xiao, T.B.Acton, G.T.Montelione, and D.Baker (2012).
Principles for designing ideal protein structures.
  Nature, 491, 222-227.
PDB codes: 2kl8 2ln3 2lta 2lv8 2lvb
22575958 U.T.Bornscheuer, G.W.Huisman, R.J.Kazlauskas, S.Lutz, J.C.Moore, and K.Robins (2012).
Engineering the third wave of biocatalysis.
  Nature, 485, 185-194.  
21349882 A.Morin, K.W.Kaufmann, C.Fortenberry, J.M.Harp, L.S.Mizoue, and J.Meiler (2011).
Computational design of an endo-1,4-{beta}-xylanase ligand binding site.
  Protein Eng Des Sel, 24, 503-516.
PDB codes: 3mf6 3mf9 3mfa 3mfc
21195018 B.M.Nestl, B.A.Nebel, and B.Hauer (2011).
Recent progress in industrial biocatalysis.
  Curr Opin Chem Biol, 15, 187-193.  
21512126 C.L.Partch, and K.H.Gardner (2011).
Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B.
  Proc Natl Acad Sci U S A, 108, 7739-7744.  
21185770 E.M.Brustad, and F.H.Arnold (2011).
Optimizing non-natural protein function with directed evolution.
  Curr Opin Chem Biol, 15, 201-210.  
  21416513 F.Nastri, L.Lista, P.Ringhieri, R.Vitale, M.Faiella, C.Andreozzi, P.Travascio, O.Maglio, A.Lombardi, and V.Pavone (2011).
A heme-peptide metalloenzyme mimetic with natural peroxidase-like activity.
  Chemistry, 17, 4444-4453.  
21287606 H.Webb, B.M.Tynan-Connolly, G.M.Lee, D.Farrell, F.O'Meara, C.R.Søndergaard, K.Teilum, C.Hewage, L.P.McIntosh, and J.E.Nielsen (2011).
Remeasuring HEWL pK(a) values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pK(a) calculations.
  Proteins, 79, 685-702.  
21128762 I.Samish, C.M.MacDermaid, J.M.Perez-Aguilar, and J.G.Saven (2011).
Theoretical and computational protein design.
  Annu Rev Phys Chem, 62, 129-149.  
21190057 J.S.Fraser, and C.J.Jackson (2011).
Mining electron density for functionally relevant protein polysterism in crystal structures.
  Cell Mol Life Sci, 68, 1829-1841.  
21258712 J.T.MacDonald, C.Barnes, R.I.Kitney, P.S.Freemont, and G.B.Stan (2011).
Computational design approaches and tools for synthetic biology.
  Integr Biol (Camb), 3, 97.  
21064131 M.Amitay, and A.Shurki (2011).
Hydrolysis of organophosphate compounds by mutant butyrylcholinesterase: a story of two histidines.
  Proteins, 79, 352-364.  
20574696 M.Linder, A.Hermansson, J.Liebeschuetz, and T.Brinck (2011).
Computational design of a lipase for catalysis of the Diels-Alder reaction.
  J Mol Model, 17, 833-849.  
21106986 M.N.Offman, M.Krol, N.Patel, S.Krishnan, J.Liu, V.Saha, and P.A.Bates (2011).
Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity.
  Blood, 117, 1614-1621.  
21271630 M.V.Golynskiy, M.S.Koay, J.L.Vinkenborg, and M.Merkx (2011).
Engineering protein switches: sensors, regulators, and spare parts for biology and biotechnology.
  Chembiochem, 12, 353-361.  
20623647 O.Sharabi, C.Yanover, A.Dekel, and J.M.Shifman (2011).
Optimizing energy functions for protein-protein interface design.
  J Comput Chem, 32, 23-32.  
  21480401 P.J.Deuss, R.den Heeten, W.Laan, and P.C.Kamer (2011).
Bioinspired catalyst design and artificial metalloenzymes.
  Chemistry, 17, 4680-4698.  
21432939 S.J.Fleishman, S.D.Khare, N.Koga, and D.Baker (2011).
Restricted sidechain plasticity in the structures of native proteins and complexes.
  Protein Sci, 20, 753-757.  
21226976 T.Schlick, R.Collepardo-Guevara, L.A.Halvorsen, S.Jung, and X.Xiao (2011).
Biomolecularmodeling and simulation: a field coming of age.
  Q Rev Biophys, 44, 191-228.  
21369567 Y.Mo, P.Bao, and J.Gao (2011).
Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory.
  Phys Chem Chem Phys, 13, 6760-6775.  
21287605 Y.W.Lin (2011).
Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling.
  Proteins, 79, 679-684.  
20506260 A.D.Wilkins, R.Lua, S.Erdin, R.M.Ward, and O.Lichtarge (2010).
Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation.
  Protein Sci, 19, 1296-1311.  
20627702 A.Vallée-Bélisle, and K.W.Plaxco (2010).
Structure-switching biosensors: inspired by Nature.
  Curr Opin Struct Biol, 20, 518-526.  
21045132 B.D.Allen, A.Nisthal, and S.L.Mayo (2010).
Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles.
  Proc Natl Acad Sci U S A, 107, 19838-19843.  
20850962 C.Jäckel, and D.Hilvert (2010).
Biocatalysts by evolution.
  Curr Opin Biotechnol, 21, 753-759.  
20085704 C.Kiel, E.Yus, and L.Serrano (2010).
Engineering signal transduction pathways.
  Cell, 140, 33-47.  
20623571 C.W.am Ende, H.Y.Meng, M.Ye, A.K.Pandey, and N.J.Zondlo (2010).
Design of lanthanide fingers: compact lanthanide-binding metalloproteins.
  Chembiochem, 11, 1738-1747.  
20080683 D.A.Kraut, P.A.Sigala, T.D.Fenn, and D.Herschlag (2010).
Dissecting the paradoxical effects of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole.
  Proc Natl Acad Sci U S A, 107, 1960-1965.
PDB code: 3ipt
20717908 D.Baker (2010).
An exciting but challenging road ahead for computational enzyme design.
  Protein Sci, 19, 1817-1819.  
20300652 D.E.Almonacid, E.R.Yera, J.B.Mitchell, and P.C.Babbitt (2010).
Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.
  PLoS Comput Biol, 6, e1000700.  
20724439 D.Farrell, F.O'Meara, M.Johnston, J.Bradley, C.R.Søndergaard, N.Georgi, H.Webb, B.M.Tynan-Connolly, U.Bjarnadottir, T.Carstensen, and J.E.Nielsen (2010).
Capturing, sharing and analysing biophysical data from protein engineering and protein characterization studies.
  Nucleic Acids Res, 38, e186.  
20525731 D.P.Nannemann, K.W.Kaufmann, J.Meiler, and B.O.Bachmann (2010).
Design and directed evolution of a dideoxy purine nucleoside phosphorylase.
  Protein Eng Des Sel, 23, 607-616.  
20483340 D.Seeliger, and B.L.de Groot (2010).
Protein thermostability calculations using alchemical free energy simulations.
  Biophys J, 98, 2309-2316.  
21085121 E.Weerapana, C.Wang, G.M.Simon, F.Richter, S.Khare, M.B.Dillon, D.A.Bachovchin, K.Mowen, D.Baker, and B.F.Cravatt (2010).
Quantitative reactivity profiling predicts functional cysteines in proteomes.
  Nature, 468, 790-795.  
20150964 E.Young, and H.Alper (2010).
Synthetic biology: tools to design, build, and optimize cellular processes.
  J Biomed Biotechnol, 2010, 130781.  
20462859 F.Lauck, C.A.Smith, G.F.Friedland, E.L.Humphris, and T.Kortemme (2010).
RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
  Nucleic Acids Res, 38, W569-W575.  
20974935 G.Guntas, C.Purbeck, and B.Kuhlman (2010).
Engineering a protein-protein interface using a computationally designed library.
  Proc Natl Acad Sci U S A, 107, 19296-19301.  
20665693 G.Kiss, D.Röthlisberger, D.Baker, and K.N.Houk (2010).
Evaluation and ranking of enzyme designs.
  Protein Sci, 19, 1760-1773.  
20647463 J.B.Siegel, A.Zanghellini, H.M.Lovick, G.Kiss, A.R.Lambert, J.L.St Clair, J.L.Gallaher, D.Hilvert, M.H.Gelb, B.L.Stoddard, K.N.Houk, F.E.Michael, and D.Baker (2010).
Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
  Science, 329, 309-313.
PDB code: 3i1c
20194782 J.K.Lassila, D.Baker, and D.Herschlag (2010).
Origins of catalysis by computationally designed retroaldolase enzymes.
  Proc Natl Acad Sci U S A, 107, 4937-4942.  
20017215 J.T.MacDonald, K.Maksimiak, M.I.Sadowski, and W.R.Taylor (2010).
De novo backbone scaffolds for protein design.
  Proteins, 78, 1311-1325.  
20822946 J.Villali, and D.Kern (2010).
Choreographing an enzyme's dance.
  Curr Opin Chem Biol, 14, 636-643.  
20643959 K.M.Frey, I.Georgiev, B.R.Donald, and A.C.Anderson (2010).
Predicting resistance mutations using protein design algorithms.
  Proc Natl Acad Sci U S A, 107, 13707-13712.
PDB codes: 3f0q 3lg4
20235548 K.W.Kaufmann, G.H.Lemmon, S.L.Deluca, J.H.Sheehan, and J.Meiler (2010).
Practically useful: what the Rosetta protein modeling suite can do for you.
  Biochemistry, 49, 2987-2998.  
20544969 L.Dai, Y.Yang, H.R.Kim, and Y.Zhou (2010).
Improving computational protein design by using structure-derived sequence profile.
  Proteins, 78, 2338-2348.  
20830209 L.P.Martínez-Castilla, and R.Rodríguez-Sotres (2010).
A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness.
  PLoS One, 5, e12483.  
20414363 L.R.Jarboe, X.Zhang, X.Wang, J.C.Moore, K.T.Shanmugam, and L.O.Ingram (2010).
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.
  J Biomed Biotechnol, 2010, 761042.  
20338183 M.Berrondo, J.J.Gray, and R.Schleif (2010).
Computational predictions of the mutant behavior of AraC.
  J Mol Biol, 398, 462-470.  
20235827 O.Khersonsky, and D.S.Tawfik (2010).
Enzyme promiscuity: a mechanistic and evolutionary perspective.
  Annu Rev Biochem, 79, 471-505.  
20636263 O.V.Galzitskaya (2010).
Is protein folding rate dependent on number of folding stages? Modeling of protein folding with ferredoxin-like fold.
  Biochemistry (Mosc), 75, 717-727.  
  20017124 P.Liu, D.K.Agrafiotis, and D.L.Theobald (2010).
Fast determination of the optimal rotational matrix for macromolecular superpositions.
  J Comput Chem, 31, 1561-1563.  
20385577 R.Grünberg, and L.Serrano (2010).
Strategies for protein synthetic biology.
  Nucleic Acids Res, 38, 2663-2675.  
20309456 R.Lonsdale, K.E.Ranaghan, and A.J.Mulholland (2010).
Computational enzymology.
  Chem Commun (Camb), 46, 2354-2372.  
20797615 S.K.Padhi, R.Fujii, G.A.Legatt, S.L.Fossum, R.Berchtold, and R.J.Kazlauskas (2010).
Switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions.
  Chem Biol, 17, 863-871.  
20647454 S.Lutz (2010).
Biochemistry. Reengineering enzymes.
  Science, 329, 285-287.  
20869867 S.Lutz (2010).
Beyond directed evolution--semi-rational protein engineering and design.
  Curr Opin Biotechnol, 21, 734-743.  
21168766 S.M.Lippow, T.S.Moon, S.Basu, S.H.Yoon, X.Li, B.A.Chapman, K.Robison, D.Lipovšek, and K.L.Prather (2010).
Engineering enzyme specificity using computational design of a defined-sequence library.
  Chem Biol, 17, 1306-1315.  
20024086 T.Shekhter, N.Metanis, P.E.Dawson, and E.Keinan (2010).
A residue outside the active site CXXC motif regulates the catalytic efficiency of Glutaredoxin 3.
  Mol Biosyst, 6, 231-238.  
20304973 T.Z.Grove, M.Hands, and L.Regan (2010).
Creating novel proteins by combining design and selection.
  Protein Eng Des Sel, 23, 449-455.  
20235108 V.Köhler, and T.R.Ward (2010).
Design of a functional nitric oxide reductase within a myoglobin scaffold.
  Chembiochem, 11, 1049-1051.  
20186860 X.Hu, H.Hu, D.N.Beratan, and W.Yang (2010).
A gradient-directed Monte Carlo approach for protein design.
  J Comput Chem, 31, 2164-2168.  
20525730 Y.D.Yang, P.Spratt, H.Chen, C.Park, and D.Kihara (2010).
Sub-AQUA: real-value quality assessment of protein structure models.
  Protein Eng Des Sel, 23, 617-632.  
20421510 Y.W.Lin, N.Yeung, Y.G.Gao, K.D.Miner, S.Tian, H.Robinson, and Y.Lu (2010).
Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin.
  Proc Natl Acad Sci U S A, 107, 8581-8586.
PDB codes: 3m38 3m39 3m3a 3m3b
20727604 Z.Chen, M.Wilmanns, and A.P.Zeng (2010).
Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development.
  Trends Biotechnol, 28, 534-542.  
19208235 A.Fischer, N.Enkler, G.Neudert, M.Bocola, R.Sterner, and R.Merkl (2009).
TransCent: computational enzyme design by transferring active sites and considering constraints relevant for catalysis.
  BMC Bioinformatics, 10, 54.  
19532987 A.J.Smith, Y.Li, and K.N.Houk (2009).
Quantum mechanics/molecular mechanics investigation of the mechanism of phosphate transfer in human uridine-cytidine kinase 2.
  Org Biomol Chem, 7, 2716-2724.  
19100336 A.Kryshtafovych, and K.Fidelis (2009).
Protein structure prediction and model quality assessment.
  Drug Discov Today, 14, 386-393.  
19574296 A.M.Van der Sloot, C.Kiel, L.Serrano, and F.Stricher (2009).
Protein design in biological networks: from manipulating the input to modifying the output.
  Protein Eng Des Sel, 22, 537-542.  
19132861 A.N.Alexandrova, and W.L.Jorgensen (2009).
Origin of the activity drop with the E50D variant of catalytic antibody 34E4 for Kemp elimination.
  J Phys Chem B, 113, 497-504.  
19229886 A.Vardi-Kilshtain, M.Roca, and A.Warshel (2009).
The empirical valence bond as an effective strategy for computer-aided enzyme design.
  Biotechnol J, 4, 495-500.  
19833875 B.Schreier, C.Stumpp, S.Wiesner, and B.Höcker (2009).
Computational design of ligand binding is not a solved problem.
  Proc Natl Acad Sci U S A, 106, 18491-18496.
PDB code: 2wrz
19249235 C.A.Tracewell, and F.H.Arnold (2009).
Directed enzyme evolution: climbing fitness peaks one amino acid at a time.
  Curr Opin Chem Biol, 13, 3-9.  
19408301 C.Malisi, O.Kohlbacher, and B.Höcker (2009).
Automated scaffold selection for enzyme design.
  Proteins, 77, 74-83.  
19908265 C.R.Jacob, S.Luber, and M.Reiher (2009).
Understanding the signatures of secondary-structure elements in proteins with Raman optical activity spectroscopy.
  Chemistry, 15, 13491-13508.  
19228942 C.Y.Chen, I.Georgiev, A.C.Anderson, and B.R.Donald (2009).
Computational structure-based redesign of enzyme activity.
  Proc Natl Acad Sci U S A, 106, 3764-3769.  
19841628 D.D.Boehr, R.Nussinov, and P.E.Wright (2009).
The role of dynamic conformational ensembles in biomolecular recognition.
  Nat Chem Biol, 5, 789-796.  
19841629 D.J.Mandell, and T.Kortemme (2009).
Computer-aided design of functional protein interactions.
  Nat Chem Biol, 5, 797-807.  
19639042 E.H.Bromley, N.J.Kuwada, M.J.Zuckermann, R.Donadini, L.Samii, G.A.Blab, G.J.Gemmen, B.J.Lopez, P.M.Curmi, N.R.Forde, D.N.Woolfson, and H.Linke (2009).
The Tumbleweed: towards a synthetic proteinmotor.
  HFSP J, 3, 204-212.  
19846764 E.W.Debler, R.Müller, D.Hilvert, and I.A.Wilson (2009).
An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket.
  Proc Natl Acad Sci U S A, 106, 18539-18544.
PDB codes: 3fo0 3fo1 3fo2
19693930 G.A.Khoury, H.Fazelinia, J.W.Chin, R.J.Pantazes, P.C.Cirino, and C.D.Maranas (2009).
Computational design of Candida boidinii xylose reductase for altered cofactor specificity.
  Protein Sci, 18, 2125-2138.  
19417073 G.Debret, A.Martel, and P.Cuniasse (2009).
RASMOT-3D PRO: a 3D motif search webserver.
  Nucleic Acids Res, 37, W459-W464.  
19780076 G.Yang, and S.G.Withers (2009).
Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
  Chembiochem, 10, 2704-2715.  
19177362 H.Fazelinia, P.C.Cirino, and C.D.Maranas (2009).
OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold.
  Protein Sci, 18, 180-195.  
19222210 H.M.Guo, and F.Tanaka (2009).
A fluorogenic aldehyde bearing a 1,2,3-triazole moiety for monitoring the progress of aldol reactions.
  J Org Chem, 74, 2417-2424.  
19170085 I.V.Loksha, J.R.Maiolo, C.W.Hong, A.Ng, and C.D.Snow (2009).
SHARPEN-systematic hierarchical algorithms for rotamers and proteins on an extended network.
  J Comput Chem, 30, 999.  
19562112 J.Carrera, G.Rodrigo, and A.Jaramillo (2009).
Towards the automated engineering of a synthetic genome.
  Mol Biosyst, 5, 733-743.  
19237570 J.Claren, C.Malisi, B.Höcker, and R.Sterner (2009).
Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds.
  Proc Natl Acad Sci U S A, 106, 3704-3709.
PDB code: 2w79
19297237 J.Damborsky, and J.Brezovsky (2009).
Computational tools for designing and engineering biocatalysts.
  Curr Opin Chem Biol, 13, 26-34.  
19646997 J.Huang, K.Makabe, M.Biancalana, A.Koide, and S.Koide (2009).
Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution.
  J Mol Biol, 392, 1221-1231.
PDB code: 3ch8
19472357 J.J.Havranek, and D.Baker (2009).
Motif-directed flexible backbone design of functional interactions.
  Protein Sci, 18, 1293-1305.  
19788332 J.Z.Ruscio, J.E.Kohn, K.A.Ball, and T.Head-Gordon (2009).
The influence of protein dynamics on the success of computational enzyme design.
  J Am Chem Soc, 131, 14111-14115.  
19643976 L.Li, S.Liang, M.M.Pilcher, and S.O.Meroueh (2009).
Incorporating receptor flexibility in the molecular design of protein interfaces.
  Protein Eng Des Sel, 22, 575-586.  
19111926 M.J.Czar, J.C.Anderson, J.S.Bader, and J.Peccoud (2009).
Gene synthesis demystified.
  Trends Biotechnol, 27, 63-72.  
19917233 M.Kenward, and K.D.Dorfman (2009).
Coarse-Grained Brownian Dynamics Simulations of the 10-23 DNAzyme.
  Biophys J, 97, 2785-2793.  
19235997 M.Kumarasiri, G.A.Baker, A.V.Soudackov, and S.Hammes-Schiffer (2009).
Computational approach for ranking mutant enzymes according to catalytic reaction rates.
  J Phys Chem B, 113, 3579-3583.  
  19090515 M.M.Müller, M.A.Windsor, W.C.Pomerantz, S.H.Gellman, and D.Hilvert (2009).
A rationally designed aldolase foldamer.
  Angew Chem Int Ed Engl, 48, 922-925.  
19161327 M.Roca, A.Vardi-Kilshtain, and A.Warshel (2009).
Toward accurate screening in computer-aided enzyme design.
  Biochemistry, 48, 3046-3056.  
19177365 M.Sagermann, R.R.Chapleau, E.DeLorimier, and M.Lei (2009).
Using affinity chromatography to engineer and characterize pH-dependent protein switches.
  Protein Sci, 18, 217-228.
PDB codes: 3crt 3cru 3d0z
19422060 M.Schneider, X.Fu, and A.E.Keating (2009).
X-ray vs. NMR structures as templates for computational protein design.
  Proteins, 77, 97.  
19324680 M.Suárez, and A.Jaramillo (2009).
Challenges in the computational design of proteins.
  J R Soc Interface, 6, S477-S491.  
19620998 N.J.Turner (2009).
Directed evolution drives the next generation of biocatalysts.
  Nat Chem Biol, 5, 567-573.  
18842631 N.S.Bogatyreva, A.A.Osypov, and D.N.Ivankov (2009).
KineticDB: a database of protein folding kinetics.
  Nucleic Acids Res, 37, D342-D346.  
19940850 N.Yeung, Y.W.Lin, Y.G.Gao, X.Zhao, B.S.Russell, L.Lei, K.D.Miner, H.Robinson, and Y.Lu (2009).
Rational design of a structural and functional nitric oxide reductase.
  Nature, 462, 1079-1082.
PDB code: 3k9z
20010598 P.A.Carr, and G.M.Church (2009).
Genome engineering.
  Nat Biotechnol, 27, 1151-1162.  
19935669 P.A.Romero, and F.H.Arnold (2009).
Exploring protein fitness landscapes by directed evolution.
  Nat Rev Mol Cell Biol, 10, 866-876.  
19470646 P.M.Murphy, J.M.Bolduc, J.L.Gallaher, B.L.Stoddard, and D.Baker (2009).
Alteration of enzyme specificity by computational loop remodeling and design.
  Proc Natl Acad Sci U S A, 106, 9215-9220.
PDB code: 3e0l
19816802 P.Marliere (2009).
The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world.
  Syst Synth Biol, 3, 77-84.  
19295603 R.L.Koder, J.L.Anderson, L.A.Solomon, K.S.Reddy, C.C.Moser, and P.L.Dutton (2009).
Design and engineering of an O(2) transport protein.
  Nature, 458, 305-309.  
19711937 S.E.Wheeler, A.Moran, S.N.Pieniazek, and K.N.Houk (2009).
Accurate reaction enthalpies and sources of error in DFT thermochemistry for aldol, Mannich, and alpha-aminoxylation reactions.
  J Phys Chem A, 113, 10376-10384.  
19113835 S.Liang, L.Li, W.L.Hsu, M.N.Pilcher, V.Uversky, Y.Zhou, A.K.Dunker, and S.O.Meroueh (2009).
Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations.
  Biochemistry, 48, 399-414.  
19830715 W.D.Marner (2009).
Practical application of synthetic biology principles.
  Biotechnol J, 4, 1406-1419.  
19318208 Y.Brudno, and D.R.Liu (2009).
Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers.
  Chem Biol, 16, 265-276.  
18826912 A.J.Mulholland (2008).
Introduction. Biomolecular simulation.
  J R Soc Interface, 5, S169-S172.  
18939839 A.J.Smith, R.Müller, M.D.Toscano, P.Kast, H.W.Hellinga, D.Hilvert, and K.N.Houk (2008).
Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle.
  J Am Chem Soc, 130, 15361-15373.  
18975945 A.N.Alexandrova, D.Röthlisberger, D.Baker, and W.L.Jorgensen (2008).
Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination.
  J Am Chem Soc, 130, 15907-15915.  
18578032 A.R.Fersht (2008).
From the first protein structures to our current knowledge of protein folding: delights and scepticisms.
  Nat Rev Mol Cell Biol, 9, 650-654.  
18354394 D.Röthlisberger, O.Khersonsky, A.M.Wollacott, L.Jiang, J.DeChancie, J.Betker, J.L.Gallaher, E.A.Althoff, A.Zanghellini, O.Dym, S.Albeck, K.N.Houk, D.S.Tawfik, and D.Baker (2008).
Kemp elimination catalysts by computational enzyme design.
  Nature, 453, 190-195.
PDB code: 2rkx
19008944 G.Cambray, and D.Mazel (2008).
Synonymous genes explore different evolutionary landscapes.
  PLoS Genet, 4, e1000256.  
18464727 G.Ghirlanda (2008).
Computational biochemistry: old enzymes, new tricks.
  Nature, 453, 164-166.  
18586714 I.Georgiev, D.Keedy, J.S.Richardson, D.C.Richardson, and B.R.Donald (2008).
Algorithm for backrub motions in protein design.
  Bioinformatics, 24, i196-i204.  
18613761 J.C.Chaput, N.W.Woodbury, L.A.Stearns, and B.A.Williams (2008).
Creating protein biocatalysts as tools for future industrial applications.
  Expert Opin Biol Ther, 8, 1087-1098.  
18725289 K.L.Prather, and C.H.Martin (2008).
De novo biosynthetic pathways: rational design of microbial chemical factories.
  Curr Opin Biotechnol, 19, 468-474.  
18800129 K.N.Houk, and P.H.Cheong (2008).
Computational prediction of small-molecule catalysts.
  Nature, 455, 309-313.  
18628239 M.M.Balamurali, D.Sharma, A.Chang, D.Khor, R.Chu, and H.Li (2008).
Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties.
  Protein Sci, 17, 1815-1826.  
18808119 P.A.Sigala, D.A.Kraut, J.M.Caaveiro, B.Pybus, E.A.Ruben, D.Ringe, G.A.Petsko, and D.Herschlag (2008).
Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole.
  J Am Chem Soc, 130, 13696-13708.
PDB codes: 2inx 3cpo
18410248 R.Das, and D.Baker (2008).
Macromolecular modeling with rosetta.
  Annu Rev Biochem, 77, 363-382.  
19020677 S.Martí, J.Andrés, V.Moliner, E.Silla, I.Tuñón, and J.Bertrán (2008).
Computational design of biological catalysts.
  Chem Soc Rev, 37, 2634-2643.  
18421288 V.Nanda (2008).
Do-it-yourself enzymes.
  Nat Chem Biol, 4, 273-275.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.