spacer
spacer

PDBsum entry 2xat

Go to PDB code: 
protein ligands links
Acetyltransferase PDB id
2xat
Jmol
Contents
Protein chain
208 a.a. *
Ligands
CLM
DCA
* Residue conservation analysis
PDB id:
2xat
Name: Acetyltransferase
Title: Complex of the hexapeptide xenobiotic acetyltransferase with chloramphenicol and desulfo-coenzyme a
Structure: Xenobiotic acetyltransferase. Chain: a. Engineered: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Strain: pa103. Cell_line: bl21. Atcc: atcc 29260. Collection: atcc 29260. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Trimer (from PDB file)
Resolution:
3.20Å     R-factor:   0.213     R-free:   0.255
Authors: T.W.Beaman,M.Sugantino,S.L.Roderick
Key ref:
T.W.Beaman et al. (1998). Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa. Biochemistry, 37, 6689-6696. PubMed id: 9578552 DOI: 10.1021/bi980106v
Date:
11-Mar-98     Release date:   17-Jun-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P26841  (CAT4_PSEAE) -  Chloramphenicol acetyltransferase
Seq:
Struc:
212 a.a.
208 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.3.1.28  - Chloramphenicol O-acetyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Acetyl-CoA + chloramphenicol = CoA + chloramphenicol 3-acetate
Acetyl-CoA
+
chloramphenicol
Bound ligand (Het Group name = CLM)
matches with 81.82% similarity
=
CoA
Bound ligand (Het Group name = DCA)
matches with 97.92% similarity
+ chloramphenicol 3-acetate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     metabolic process   2 terms 
  Biochemical function     transferase activity     3 terms  

 

 
    reference    
 
 
DOI no: 10.1021/bi980106v Biochemistry 37:6689-6696 (1998)
PubMed id: 9578552  
 
 
Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa.
T.W.Beaman, M.Sugantino, S.L.Roderick.
 
  ABSTRACT  
 
The crystal structure of the xenobiotic acetyltransferase from Pseudomonas aeruginosa PA103 (PaXAT) has been determined, as well as that of its complex with the substrate chloramphenicol and the cofactor analogue desulfo-coenzyme A. PaXAT is a member of the large hexapeptide acyltransferase family of enzymes that display tandem repeated copies of a six-residue hexapeptide repeat sequence motif encoding a left-handed parallel beta helix (L betaH) structural domain. The xenobiotic acetyltransferase class of hexapeptide acyltransferases is composed of microbial enzymes that utilize acetyl-CoA to acylate a variety of hydroxyl-bearing acceptors. The active site of trimeric PaXAT is a short tunnel into which chloramphenicol and the cofactor analogue desulfo-CoA project from opposite ends. This tunnel is formed by the flat parallel beta sheets of two separate L betaH domains and an extended 39-residue loop. His 79 of the extended loop forms hydrogen bonds from its imidazole NE2 atom to the 3-hydroxyl group of chloramphenicol and from its ND1 group to the peptide oxygen of Thr 86. The interactions of this histidine residue are similar to those found in the structurally unrelated type III chloramphenicol acetyltransferase and suggest that His 79 of PaXAT may be similarly positioned and tautomerically stabilized to serve as a general base catalyst.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20564049 A.Das, and C.Mukhopadhyay (2010).
LpxA: a natural nanotube.
  Biopolymers, 93, 845-853.  
20822442 M.Morar, and G.D.Wright (2010).
The genomic enzymology of antibiotic resistance.
  Annu Rev Genet, 44, 25-51.  
19655786 C.M.Bartling, and C.R.Raetz (2009).
Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis.
  Biochemistry, 48, 8672-8683.
PDB code: 3eh0
19525232 H.J.Lee, B.Rakić, M.Gilbert, W.W.Wakarchuk, S.G.Withers, and N.C.Strynadka (2009).
Structural and kinetic characterizations of the polysialic acid O-acetyltransferase OatWY from Neisseria meningitidis.
  J Biol Chem, 284, 24501-24511.
PDB codes: 2wlc 2wld 2wle 2wlf 2wlg
18422345 C.M.Bartling, and C.R.Raetz (2008).
Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis.
  Biochemistry, 47, 5290-5302.  
18667421 N.B.Olivier, and B.Imperiali (2008).
Crystal Structure and Catalytic Mechanism of PglD from Campylobacter jejuni.
  J Biol Chem, 283, 27937-27946.
PDB codes: 3bss 3bsw 3bsy
17519228 A.K.Bergfeld, H.Claus, U.Vogel, and M.Mühlenhoff (2007).
Biochemical characterization of the polysialic acid-specific O-acetyltransferase NeuO of Escherichia coli K1.
  J Biol Chem, 282, 22217-22227.  
16835299 A.H.Williams, R.M.Immormino, D.T.Gewirth, and C.R.Raetz (2006).
Structure of UDP-N-acetylglucosamine acyltransferase with a bound antibacterial pentadecapeptide.
  Proc Natl Acad Sci U S A, 103, 10877-10882.
PDB code: 2aq9
17087520 N.B.Olivier, M.M.Chen, J.R.Behr, and B.Imperiali (2006).
In vitro biosynthesis of UDP-N,N'-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system.
  Biochemistry, 45, 13659-13669.  
16102001 C.Q.Wenzel, C.Daniels, R.A.Keates, D.Brewer, and J.S.Lam (2005).
Evidence that WbpD is an N-acetyltransferase belonging to the hexapeptide acyltransferase superfamily and an important protein for O-antigen biosynthesis in Pseudomonas aeruginosa PAO1.
  Mol Microbiol, 57, 1288-1303.  
15333931 J.Gorman, and L.Shapiro (2004).
Structure of serine acetyltransferase from Haemophilus influenzae Rd.
  Acta Crystallogr D Biol Crystallogr, 60, 1600-1605.
PDB code: 1s80
15251197 J.Wang, and J.H.Liu (2004).
Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa.
  FEMS Microbiol Lett, 236, 197-204.  
15211513 L.L.Videau, W.B.Arendall, and J.S.Richardson (2004).
The cis-Pro touch-turn: a rare motif preferred at functional sites.
  Proteins, 56, 298-309.  
15390264 W.Qiu, R.Shi, M.L.Lu, M.Zhou, P.H.Roy, J.Lapointe, and S.X.Lin (2004).
Crystal structure of chloramphenicol acetyltransferase B2 encoded by the multiresistance transposon Tn2424.
  Proteins, 57, 858-861.  
12771141 L.E.Kehoe, J.Snidwongse, P.Courvalin, J.B.Rafferty, and I.A.Murray (2003).
Structural basis of Synercid (quinupristin-dalfopristin) resistance in Gram-positive bacterial pathogens.
  J Biol Chem, 278, 29963-29970.
PDB codes: 1mr7 1mr9 1mrl
11937062 X.G.Wang, L.R.Olsen, and S.L.Roderick (2002).
Structure of the lac operon galactoside acetyltransferase.
  Structure, 10, 581-588.
PDB codes: 1kqa 1krr 1kru 1krv
11717516 L.Lo Leggio, F.Dal Degan, P.Poulsen, S.O.Sørensen, K.Harlow, P.Harris, and S.Larsen (2001).
Crystallization and preliminary X-ray analysis of maltose O-acetyltransferase.
  Acta Crystallogr D Biol Crystallogr, 57, 1915-1918.  
11329257 L.R.Olsen, and S.L.Roderick (2001).
Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites.
  Biochemistry, 40, 1913-1921.
PDB code: 1hv9
11173485 L.R.Olsen, Y.Tian, and S.L.Roderick (2001).
Purification, crystallization and preliminary X-ray data for Escherichia coli GlmU: a bifunctional acetyltransferase/uridyltransferase.
  Acta Crystallogr D Biol Crystallogr, 57, 296-297.  
11168407 M.Wirtz, O.Berkowitz, M.Droux, and R.Hell (2001).
The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction.
  Eur J Biochem, 268, 686-693.  
11173480 M.Zhou, M.L.Lu, W.Qiu, R.L.Campbell, V.Nahoum, J.Lapointe, P.H.Roy, and S.X.Lin (2001).
Crystallization and preliminary X-ray diffraction analysis of the chloramphenicol acetyltransferase from Tn2424.
  Acta Crystallogr D Biol Crystallogr, 57, 281-283.  
10930752 D.A.Daines, L.F.Wright, D.O.Chaffin, C.E.Rubens, and R.P.Silver (2000).
NeuD plays a role in the synthesis of sialic acid in Escherichia coli K1.
  FEMS Microbiol Lett, 189, 281-284.  
10960115 D.A.Daines, and R.P.Silver (2000).
Evidence for multimerization of neu proteins involved in polysialic acid synthesis in Escherichia coli K1 using improved LexA-based vectors.
  J Bacteriol, 182, 5267-5270.  
11123920 D.E.Kamen, Y.Griko, and R.W.Woody (2000).
The stability, structural organization, and denaturation of pectate lyase C, a parallel beta-helix protein.
  Biochemistry, 39, 15932-15943.  
  11206055 J.F.Kreisberg, S.D.Betts, and J.King (2000).
Beta-helix core packing within the triple-stranded oligomerization domain of the P22 tailspike.
  Protein Sci, 9, 2338-2343.  
10978542 K.S.Smith, and J.G.Ferry (2000).
Prokaryotic carbonic anhydrases.
  FEMS Microbiol Rev, 24, 335-366.  
10771435 M.Sugantino, and S.L.Roderick (2000).
Expression, purification and crystallization of enterococcus faecium streptogramin A acetyltransferase.
  Acta Crystallogr D Biol Crystallogr, 56, 640-642.  
10617639 V.J.Hindson, P.C.Moody, A.J.Rowe, and W.V.Shaw (2000).
Serine acetyltransferase from Escherichia coli is a dimer of trimers.
  J Biol Chem, 275, 461-466.  
10024876 A.B.Hickman, D.C.Klein, and F.Dyda (1999).
Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism.
  Mol Cell, 3, 23-32.
PDB code: 1b6b
10319816 A.B.Hickman, M.A.Namboodiri, D.C.Klein, and F.Dyda (1999).
The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 A resolution with a bisubstrate analog.
  Cell, 97, 361-369.
PDB code: 1cjw
10428949 K.Brown, F.Pompeo, S.Dixon, D.Mengin-Lecreulx, C.Cambillau, and Y.Bourne (1999).
Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily.
  EMBO J, 18, 4096-4107.
PDB codes: 1fwy 1fxj
10480918 T.J.Wyckoff, and C.R.Raetz (1999).
The active site of Escherichia coli UDP-N-acetylglucosamine acyltransferase. Chemical modification and site-directed mutagenesis.
  J Biol Chem, 274, 27047-27055.  
10531507 X.G.Wang, and S.L.Roderick (1999).
Expression, purification, crystallization and preliminary x-ray data of Escherichia coli galactoside acetyltransferase.
  Acta Crystallogr D Biol Crystallogr, 55, 1955-1957.  
  9733680 F.Pompeo, J.van Heijenoort, and D.Mengin-Lecreulx (1998).
Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes.
  J Bacteriol, 180, 4799-4803.  
9817851 Y.Modis, and R.Wierenga (1998).
Two crystal structures of N-acetyltransferases reveal a new fold for CoA-dependent enzymes.
  Structure, 6, 1345-1350.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.