PDBsum entry 2rgx

Go to PDB code: 
protein ligands metals links
Transferase PDB id
Protein chain
203 a.a. *
_ZN ×4
Waters ×113
* Residue conservation analysis
PDB id:
Name: Transferase
Title: Crystal structure of adenylate kinase from aquifex aeolicus with ap5a
Structure: Adenylate kinase. Chain: a. Synonym: atp-amp transphosphorylase. Engineered: yes
Source: Aquifex aeolicus. Organism_taxid: 63363. Gene: adk. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
1.90Å     R-factor:   0.209     R-free:   0.243
Authors: V.Thai,M.Wolf-Watz,T Fenn,E.Pozharski,M.A.Wilson,G.A.Petsko,
Key ref:
K.A.Henzler-Wildman et al. (2007). Intrinsic motions along an enzymatic reaction trajectory. Nature, 450, 838-844. PubMed id: 18026086 DOI: 10.1038/nature06410
05-Oct-07     Release date:   18-Dec-07    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
O66490  (KAD_AQUAE) -  Adenylate kinase
206 a.a.
203 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Adenylate kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + AMP = 2 ADP
Bound ligand (Het Group name = AP5)
matches with 54.39% similarity
= 2 × ADP
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     AMP salvage   5 terms 
  Biochemical function     nucleotide binding     7 terms  


DOI no: 10.1038/nature06410 Nature 450:838-844 (2007)
PubMed id: 18026086  
Intrinsic motions along an enzymatic reaction trajectory.
K.A.Henzler-Wildman, V.Thai, M.Lei, M.Ott, M.Wolf-Watz, T.Fenn, E.Pozharski, M.A.Wilson, G.A.Petsko, M.Karplus, C.G.Hübner, D.Kern.
The mechanisms by which enzymes achieve extraordinary rate acceleration and specificity have long been of key interest in biochemistry. It is generally recognized that substrate binding coupled to conformational changes of the substrate-enzyme complex aligns the reactive groups in an optimal environment for efficient chemistry. Although chemical mechanisms have been elucidated for many enzymes, the question of how enzymes achieve the catalytically competent state has only recently become approachable by experiment and computation. Here we show crystallographic evidence for conformational substates along the trajectory towards the catalytically competent 'closed' state in the ligand-free form of the enzyme adenylate kinase. Molecular dynamics simulations indicate that these partially closed conformations are sampled in nanoseconds, whereas nuclear magnetic resonance and single-molecule fluorescence resonance energy transfer reveal rare sampling of a fully closed conformation occurring on the microsecond-to-millisecond timescale. Thus, the larger-scale motions in substrate-free adenylate kinase are not random, but preferentially follow the pathways that create the configuration capable of proficient chemistry. Such preferred directionality, encoded in the fold, may contribute to catalysis in many enzymes.
  Selected figure(s)  
Figure 1.
Figure 1: Kinetic model and X-ray structure of Aquifex Adk. a, Proposed reaction scheme for the enzyme adenylate kinase (E) including the steps of substrate binding (k[on]), lid closing (k[close]), phospho-transfer (k[p-transfer]), lid opening (k[open]) and substrate dissociation (k[off]). b, Superposition of molecule A (for definition, see Fig. 2) of apo Aquifex (red) with apo E. coli (blue) Adk reveals only small changes in the overall structure between the homologues, as indicated by dashed ovals. c, Superposition of apo Aquifex Adk (red) and Aquifex Adk in complex (green) with the substrate analogue Zn^2+ Ap5A (shown as ball and stick in grey) demonstrates the closure of the ATP and AMP lids on substrate binding.
Figure 2.
Figure 2: Conformational substates of ligand-free Aquifex Adk detected in the crystal structure. a, Superposition of the three molecules, A, B and C, in the asymmetric unit of apo Adk (red, orange and yellow, respectively) and Adk complexed with Zn^2+ Ap5A (green; Zn^2+ from the crystallization mother liquor is bound to the Mg^2+ site). The substates A, B and C lie along the reaction trajectory towards the closed state. b, Backbone displacement of A (red), B (orange) and C (yellow) relative to the inhibitor-bound form. c, d, The conformational substates A, B and C are a result of motions around eight hinges, indicated by arrows (for details about the hinges, see ref. 22). For better visualization of the hinges of the ATP lid, the latter was rotated by 90° (d) with respect to a. The two views in c show the AMP lid with different segments overlaid to highlight the two distinct hinge pairs. e, 2F[o]–F[c] maps contoured at 1.0 of the ATP lids of molecules A (left), B (centre) and C (right) show the quality of the electron density.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2007, 450, 838-844) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21447162 A.Kurakin (2011).
The self-organizing fractal theory as a universal discovery method: the phenomenon of life.
  Theor Biol Med Model, 8, 4.  
20821240 A.Mukhopadhyay, A.V.Kladova, S.A.Bursakov, O.Y.Gavel, J.J.Calvete, V.L.Shnyrov, I.Moura, J.J.Moura, M.J.Romão, and J.Trincão (2011).
Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria.
  J Biol Inorg Chem, 16, 51-61.
PDB codes: 2xb4 3l0p 3l0s
21261390 B.Jana, B.V.Adkar, R.Biswas, and B.Bagchi (2011).
Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.
  J Chem Phys, 134, 035101.  
  21365689 D.Armenta-Medina, E.Pérez-Rueda, and L.Segovia (2011).
Identification of functional motions in the adenylate kinase (ADK) protein family by computational hybrid approaches.
  Proteins, 79, 1662-1671.  
21273505 D.U.Ferreiro, J.A.Hegler, E.A.Komives, and P.G.Wolynes (2011).
On the role of frustration in the energy landscapes of allosteric proteins.
  Proc Natl Acad Sci U S A, 108, 3499-3503.  
21097895 E.I.Juritz, S.F.Alberti, and G.D.Parisi (2011).
PCDB: a database of protein conformational diversity.
  Nucleic Acids Res, 39, D475-D479.  
21857680 G.Bouvignies, P.Vallurupalli, D.F.Hansen, B.E.Correia, O.Lange, A.Bah, R.M.Vernon, F.W.Dahlquist, D.Baker, and L.E.Kay (2011).
Solution structure of a minor and transiently formed state of a T4 lysozyme mutant.
  Nature, 477, 111-114.
PDB codes: 2lc9 2lcb
21280116 G.M.Clore (2011).
Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation.
  Protein Sci, 20, 229-246.  
21190057 J.S.Fraser, and C.J.Jackson (2011).
Mining electron density for functionally relevant protein polysterism in crystal structures.
  Cell Mol Life Sci, 68, 1829-1841.  
21058295 L.Skjaerven, A.Martinez, and N.Reuter (2011).
Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
  Proteins, 79, 232-243.  
21305683 M.Börsch, and J.Wrachtrup (2011).
Improving FRET-Based Monitoring of Single Chemomechanical Rotary Motors at Work.
  Chemphyschem, 12, 542-553.  
21073359 M.Börsch (2011).
Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases.
  Biol Chem, 392, 135-142.  
21214861 M.Bieri, A.H.Kwan, M.Mobli, G.F.King, J.P.Mackay, and P.R.Gooley (2011).
Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination.
  FEBS J, 278, 704-715.  
21356195 R.Brandman, J.N.Lampe, Y.Brandman, and Montellano (2011).
Active-site residues move independently from the rest of the protein in a 200 ns molecular dynamics simulation of cytochrome P450 CYP119.
  Arch Biochem Biophys, 509, 127-132.  
21423982 R.Kausik, and S.Han (2011).
Dynamics and state of lipid bilayer-internal water unraveled with solution state 1H dynamic nuclear polarization.
  Phys Chem Chem Phys, 13, 7732-7746.  
21241150 T.Oroguchi, and M.Ikeguchi (2011).
Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations.
  J Chem Phys, 134, 025102.  
21226976 T.Schlick, R.Collepardo-Guevara, L.A.Halvorsen, S.Jung, and X.Xiao (2011).
Biomolecularmodeling and simulation: a field coming of age.
  Q Rev Biophys, 44, 191-228.  
21220113 Paula, G.Razzera, E.Barreto-Bergter, F.C.Almeida, and A.P.Valente (2011).
Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction.
  Structure, 19, 26-36.
PDB code: 2ksk
21159621 Y.Mao (2011).
Dynamics studies of luciferase using elastic network model: how the sequence distribution of luciferase determines its color.
  Protein Eng Des Sel, 24, 341-349.  
21322734 Y.Naritomi, and S.Fuchigami (2011).
Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.
  J Chem Phys, 134, 065101.  
21183988 Y.W.Tan, and H.Yang (2011).
Seeing the forest for the trees: fluorescence studies of single enzymes in the context of ensemble experiments.
  Phys Chem Chem Phys, 13, 1709-1721.  
21034466 A.F.Angyán, B.Szappanos, A.Perczel, and Z.Gáspári (2010).
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data.
  BMC Struct Biol, 10, 39.  
20415450 A.Genoni, G.Morra, K.M.Merz, and G.Colombo (2010).
Computational study of the resistance shown by the subtype B/HIV-1 protease to currently known inhibitors.
  Biochemistry, 49, 4283-4295.  
20691107 A.Zen, C.Micheletti, O.Keskin, and R.Nussinov (2010).
Comparing interfacial dynamics in protein-protein complexes: an elastic network approach.
  BMC Struct Biol, 10, 26.  
20702407 C.M.Barbieri, T.R.Mack, V.L.Robinson, M.T.Miller, and A.M.Stock (2010).
Regulation of response regulator autophosphorylation through interdomain contacts.
  J Biol Chem, 285, 32325-32335.
PDB codes: 3nhz 3nnn 3nns
20483345 C.Peng, L.Zhang, and T.Head-Gordon (2010).
Instantaneous normal modes as an unforced reaction coordinate for protein conformational transitions.
  Biophys J, 98, 2356-2364.  
20331978 G.W.Buchko, H.Robinson, J.Abendroth, B.L.Staker, and P.J.Myler (2010).
Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): profound asymmetry in the crystal structure of the 'open' state.
  Biochem Biophys Res Commun, 394, 1012-1017.
PDB code: 3gmt
20617196 H.Dong, S.Qin, and H.X.Zhou (2010).
Effects of macromolecular crowding on protein conformational changes.
  PLoS Comput Biol, 6, e1000833.  
19785456 I.Bahar, T.R.Lezon, A.Bakan, and I.H.Shrivastava (2010).
Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins.
  Chem Rev, 110, 1463-1497.  
21081091 J.B.Brokaw, and J.W.Chu (2010).
On the roles of substrate binding and hinge unfolding in conformational changes of adenylate kinase.
  Biophys J, 99, 3420-3429.  
20686191 J.Hohlbein, K.Gryte, M.Heilemann, and A.N.Kapanidis (2010).
Surfing on a new wave of single-molecule fluorescence methods.
  Phys Biol, 7, 031001.  
20096701 J.Lal, P.Fouquet, M.Maccarini, and L.Makowski (2010).
Neutron spin-echo studies of hemoglobin and myoglobin: multiscale internal dynamics.
  J Mol Biol, 397, 423-435.  
20876138 J.N.Bandaria, S.Dutta, M.W.Nydegger, W.Rock, A.Kohen, and C.M.Cheatum (2010).
Characterizing the dynamics of functionally relevant complexes of formate dehydrogenase.
  Proc Natl Acad Sci U S A, 107, 17974-17979.  
20822946 J.Villali, and D.Kern (2010).
Choreographing an enzyme's dance.
  Curr Opin Chem Biol, 14, 636-643.  
20385843 K.Itoh, and M.Sasai (2010).
Entropic mechanism of large fluctuation in allosteric transition.
  Proc Natl Acad Sci U S A, 107, 7775-7780.  
20049539 L.Makowski (2010).
Characterization of proteins with wide-angle X-ray solution scattering (WAXS).
  J Struct Funct Genomics, 11, 9.  
20704697 M.Bhattacharyya, and S.Vishveshwara (2010).
Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis.
  BMC Struct Biol, 10, 27.  
20715198 M.Roca, M.Oliva, R.Castillo, V.Moliner, and I.Tuñón (2010).
Do dynamic effects play a significant role in enzymatic catalysis? A theoretical analysis of formate dehydrogenase.
  Chemistry, 16, 11399-11411.  
20487508 N.Haspel, M.Moll, M.L.Baker, W.Chiu, and L.E.Kavraki (2010).
Tracing conformational changes in proteins.
  BMC Struct Biol, 10, S1.  
20714505 N.Stern, D.T.Major, H.E.Gottlieb, D.Weizman, and B.Fischer (2010).
What is the conformation of physiologically-active dinucleoside polyphosphates in solution? Conformational analysis of free dinucleoside polyphosphates by NMR and molecular dynamics simulations.
  Org Biomol Chem, 8, 4637-4652.  
20819242 P.I.Zhuravlev, and G.A.Papoian (2010).
Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework.
  Q Rev Biophys, 43, 295-332.  
20499387 P.T.Lang, H.L.Ng, J.S.Fraser, J.E.Corn, N.Echols, M.Sales, J.M.Holton, and T.Alber (2010).
Automated electron-density sampling reveals widespread conformational polymorphism in proteins.
  Protein Sci, 19, 1420-1431.  
20205445 R.G.Coleman, and K.A.Sharp (2010).
Protein pockets: inventory, shape, and comparison.
  J Chem Inf Model, 50, 589-603.  
20444876 R.Potestio, T.Aleksiev, F.Pontiggia, S.Cozzini, and C.Micheletti (2010).
ALADYN: a web server for aligning proteins by matching their large-scale motion.
  Nucleic Acids Res, 38, W41-W45.  
  20099310 S.C.Kamerlin, and A.Warshel (2010).
At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?
  Proteins, 78, 1339-1375.  
20647454 S.Lutz (2010).
Biochemistry. Reengineering enzymes.
  Science, 329, 285-287.  
21081909 U.Olsson, and M.Wolf-Watz (2010).
Overlap between folding and functional energy landscapes for adenylate kinase conformational change.
  Nat Commun, 1, 111.  
20471946 X.Chen, B.H.Lee, D.Finley, and K.J.Walters (2010).
Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2.
  Mol Cell, 38, 404-415.
PDB codes: 2kqz 2kr0
  20862304 Y.Liu, L.M.Gierasch, and I.Bahar (2010).
Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs.
  PLoS Comput Biol, 6, 0.  
20005804 A.K.Gardino, J.Villali, A.Kivenson, M.Lei, C.F.Liu, P.Steindel, E.Z.Eisenmesser, W.Labeikovsky, M.Wolf-Watz, M.W.Clarkson, and D.Kern (2009).
Transient non-native hydrogen bonds promote activation of a signaling protein.
  Cell, 139, 1109-1118.  
19706894 A.Korkut, and W.A.Hendrickson (2009).
Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinase.
  Proc Natl Acad Sci U S A, 106, 15673-15678.  
  19416527 A.Kurakin (2009).
Scale-free flow of life: on the biology, economics, and physics of the cell.
  Theor Biol Med Model, 6, 6.  
19362843 A.N.Kapanidis, and T.Strick (2009).
Biology, one molecule at a time.
  Trends Biochem Sci, 34, 234-243.  
19805169 A.V.Pisliakov, J.Cao, S.C.Kamerlin, and A.Warshel (2009).
Enzyme millisecond conformational dynamics do not catalyze the chemical step.
  Proc Natl Acad Sci U S A, 106, 17359-17364.  
19851447 C.Atilgan, and A.R.Atilgan (2009).
Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein.
  PLoS Comput Biol, 5, e1000544.  
19966226 C.J.Jackson, J.L.Foo, N.Tokuriki, L.Afriat, P.D.Carr, H.K.Kim, G.Schenk, D.S.Tawfik, and D.L.Ollis (2009).
Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase.
  Proc Natl Acad Sci U S A, 106, 21631-21636.
PDB codes: 3a3w 3a3x 3a4j
19358547 C.K.Fisher, and H.M.Al-Hashimi (2009).
Approximate reconstruction of continuous spatially complex domain motions by multialignment NMR residual dipolar couplings.
  J Phys Chem B, 113, 6173-6176.  
20365129 C.P.Calderon (2009).
Data-driven approach to decomposing complex enzyme kinetics with surrogate models.
  Phys Rev E Stat Nonlin Soft Matter Phys, 80, 061118.  
19841628 D.D.Boehr, R.Nussinov, and P.E.Wright (2009).
The role of dynamic conformational ensembles in biomolecular recognition.
  Nat Chem Biol, 5, 789-796.  
19368882 D.L.Mobley, and K.A.Dill (2009).
Binding of small-molecule ligands to proteins: "what you see" is not always "what you get".
  Structure, 17, 489-498.  
19508101 D.Li, M.S.Liu, B.Ji, K.Hwang, and Y.Huang (2009).
Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
  J Chem Phys, 130, 215102.  
19933326 F.Huang, S.Rajagopalan, G.Settanni, R.J.Marsh, D.A.Armoogum, N.Nicolaou, A.J.Bain, E.Lerner, E.Haas, L.Ying, and A.R.Fersht (2009).
Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer.
  Proc Natl Acad Sci U S A, 106, 20758-20763.  
19478996 G.D.Friedland, N.A.Lakomek, C.Griesinger, J.Meiler, and T.Kortemme (2009).
A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.
  PLoS Comput Biol, 5, e1000393.
PDB code: 2kn5
19300478 G.Morra, G.Verkhivker, and G.Colombo (2009).
Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer.
  PLoS Comput Biol, 5, e1000323.  
19220918 J.A.Velázquez-Muriel, M.Rueda, I.Cuesta, A.Pascual-Montano, M.Orozco, and J.M.Carazo (2009).
Comparison of molecular dynamics and superfamily spaces of protein domain deformation.
  BMC Struct Biol, 9, 6.  
19361980 J.L.Klepeis, K.Lindorff-Larsen, R.O.Dror, and D.E.Shaw (2009).
Long-timescale molecular dynamics simulations of protein structure and function.
  Curr Opin Struct Biol, 19, 120-127.  
20354595 J.P.Klinman (2009).
An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling.
  Chem Phys Lett, 471, 179-193.  
19267870 M.F.Brown, K.Martínez-Mayorga, K.Nakanishi, G.F.Salgado, and A.V.Struts (2009).
Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solid-state H NMR Spectroscopy.
  Photochem Photobiol, 85, 442-453.  
19576227 M.Lei, J.Velos, A.Gardino, A.Kivenson, M.Karplus, and D.Kern (2009).
Segmented transition pathway of the signaling protein nitrogen regulatory protein C.
  J Mol Biol, 392, 823-836.  
19751742 O.Beckstein, E.J.Denning, J.R.Perilla, and T.B.Woolf (2009).
Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open<-->closed transitions.
  J Mol Biol, 394, 160-176.  
19679091 P.A.Osmulski, M.Hochstrasser, and M.Gaczynska (2009).
A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel.
  Structure, 17, 1137-1147.  
19319480 P.Vallurupalli, D.F.Hansen, P.Lundström, and L.E.Kay (2009).
CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
  J Biomol NMR, 45, 45-55.  
19130895 R.Liu, A.L.Ström, J.Zhai, J.Gal, S.Bao, W.Gong, and H.Zhu (2009).
Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase.
  Int J Biochem Cell Biol, 41, 1371-1380.  
19597482 R.Perez-Jimenez, J.Li, P.Kosuri, I.Sanchez-Romero, A.P.Wiita, D.Rodriguez-Larrea, A.Chueca, A.Holmgren, A.Miranda-Vizuete, K.Becker, S.H.Cho, J.Beckwith, E.Gelhaye, J.P.Jacquot, E.Gaucher, J.M.Sanchez-Ruiz, B.J.Berne, and J.M.Fernandez (2009).
Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy.
  Nat Struct Mol Biol, 16, 890-896.  
19301911 R.V.Swift, and J.A.McCammon (2009).
Substrate induced population shifts and stochastic gating in the PBCV-1 mRNA capping enzyme.
  J Am Chem Soc, 131, 5126-5133.  
19620996 S.D.Schwartz, and V.L.Schramm (2009).
Enzymatic transition states and dynamic motion in barrier crossing.
  Nat Chem Biol, 5, 551-558.  
19637848 S.E.Hill, J.N.Bandaria, M.Fox, E.Vanderah, A.Kohen, and C.M.Cheatum (2009).
Exploring the molecular origins of protein dynamics in the active site of human carbonic anhydrase II.
  J Phys Chem B, 113, 11505-11510.  
19274733 S.Lukman, and G.H.Grant (2009).
A network of dynamically conserved residues deciphers the motions of maltose transporter.
  Proteins, 76, 588-597.  
19924217 S.R.Tzeng, and C.G.Kalodimos (2009).
Dynamic activation of an allosteric regulatory protein.
  Nature, 462, 368-372.  
19348764 T.Oroguchi, H.Hashimoto, T.Shimizu, M.Sato, and M.Ikeguchi (2009).
Intrinsic dynamics of restriction endonuclease EcoO109I studied by molecular dynamics simulations and X-ray scattering data analysis.
  Biophys J, 96, 2808-2822.  
19860825 X.Zhou, N.Zhang, L.Liu, K.J.Walters, P.E.Hanna, and C.R.Wagner (2009).
Probing the catalytic potential of the hamster arylamine N-acetyltransferase 2 catalytic triad by site-directed mutagenesis of the proximal conserved residue, Tyr190.
  FEBS J, 276, 6928-6941.  
19507242 Y.Feng, L.Yang, A.Kloczkowski, and R.L.Jernigan (2009).
The energy profiles of atomic conformational transition intermediates of adenylate kinase.
  Proteins, 77, 551-558.  
19422062 Z.Palmai, L.Chaloin, C.Lionne, J.Fidy, D.Perahia, and E.Balog (2009).
Substrate binding modifies the hinge bending characteristics of human 3-phosphoglycerate kinase: a molecular dynamics study.
  Proteins, 77, 319-329.  
18855677 A.Bakan, J.S.Lazo, P.Wipf, K.M.Brummond, and I.Bahar (2008).
Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening.
  Curr Med Chem, 15, 2536-2544.  
18939839 A.J.Smith, R.Müller, M.D.Toscano, P.Kast, H.W.Hellinga, D.Hilvert, and K.N.Houk (2008).
Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle.
  J Am Chem Soc, 130, 15361-15373.  
18339805 C.N.Chi, L.Elfström, Y.Shi, T.Snäll, A.Engström, and P.Jemth (2008).
Reassessing a sparse energetic network within a single protein domain.
  Proc Natl Acad Sci U S A, 105, 4679-4684.  
18574698 D.F.Hansen, P.Vallurupalli, and L.E.Kay (2008).
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states.
  J Biomol NMR, 41, 113-120.  
18931260 F.Pontiggia, A.Zen, and C.Micheletti (2008).
Small- and large-scale conformational changes of adenylate kinase: a molecular dynamics study of the subdomain motion and mechanics.
  Biophys J, 95, 5901-5912.  
18246106 G.G.Dodson, D.P.Lane, and C.S.Verma (2008).
Molecular simulations of protein dynamics: new windows on mechanisms in biology.
  EMBO Rep, 9, 144-150.  
18708324 G.M.Altschuler, and K.R.Willison (2008).
Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin.
  J R Soc Interface, 5, 1391-1408.  
18931781 G.M.Clore (2008).
Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement.
  Mol Biosyst, 4, 1058-1069.  
18585343 G.McGill (2008).
Molecular movies... coming to a lecture near you.
  Cell, 133, 1127-1132.  
18462678 J.Gsponer, J.Christodoulou, A.Cavalli, J.M.Bui, B.Richter, C.M.Dobson, and M.Vendruscolo (2008).
A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
  Structure, 16, 736-746.
PDB codes: 2k0e 2k0f
18678900 K.Okazaki, and S.Takada (2008).
Dynamic energy landscape view of coupled binding and protein conformational change: induced-fit versus population-shift mechanisms.
  Proc Natl Acad Sci U S A, 105, 11182-11187.  
18682219 M.B.Kubitzki, and Groot (2008).
The atomistic mechanism of conformational transition in adenylate kinase: a TEE-REX molecular dynamics study.
  Structure, 16, 1175-1182.  
18941632 M.Cardó-Vila, A.J.Zurita, R.J.Giordano, J.Sun, R.Rangel, L.Guzman-Rojas, C.D.Anobom, A.P.Valente, F.C.Almeida, J.Lahdenranta, M.G.Kolonin, W.Arap, and R.Pasqualini (2008).
A ligand peptide motif selected from a cancer patient is a receptor-interacting site within human interleukin-11.
  PLoS ONE, 3, e3452.  
18704171 M.Cecchini, A.Houdusse, and M.Karplus (2008).
Allosteric communication in myosin V: from small conformational changes to large directed movements.
  PLoS Comput Biol, 4, e1000129.  
18412261 M.S.Liu, B.D.Todd, S.Yao, Z.P.Feng, R.S.Norton, and R.J.Sadus (2008).
Coarse-grained dynamics of the receiver domain of NtrC: fluctuations, correlations and implications for allosteric cooperativity.
  Proteins, 73, 218-227.  
18676657 N.Kantarci-Carsibasi, T.Haliloglu, and P.Doruker (2008).
Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes.
  Biophys J, 95, 5862-5873.  
19404472 P.C.Whitford, J.N.Onuchic, and P.G.Wolynes (2008).
Energy landscape along an enzymatic reaction trajectory: hinges or cracks?
  HFSP J, 2, 61-64.  
18840689 R.K.Eppler, E.P.Hudson, S.D.Chase, J.S.Dordick, J.A.Reimer, and D.S.Clark (2008).
Biocatalyst activity in nonaqueous environments correlates with centisecond-range protein motions.
  Proc Natl Acad Sci U S A, 105, 15672-15677.  
18946041 S.Saen-Oon, S.Quaytman-Machleder, V.L.Schramm, and S.D.Schwartz (2008).
Atomic detail of chemical transformation at the transition state of an enzymatic reaction.
  Proc Natl Acad Sci U S A, 105, 16543-16548.  
18075575 K.Henzler-Wildman, and D.Kern (2007).
Dynamic personalities of proteins.
  Nature, 450, 964-972.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.