|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
319 a.a.
|
 |
|
|
|
|
|
|
|
178 a.a.
|
 |
|
|
|
|
|
|
|
213 a.a.
|
 |
|
|
|
|
|
|
|
231 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein/immune system
|
 |
|
Title:
|
 |
Structure of tyrosine-sulfated 412d antibody complexed with HIV-1 yu2 gp120 and cd4
|
|
Structure:
|
 |
Envelope glycoprotein gp160. Chain: a, e. Fragment: core with v3. Synonym: env polyprotein. Engineered: yes. T-cell surface glycoprotein cd4. Chain: b, f. Fragment: d1d2, ig-like v-type and ig-like c2-type 1 domains. Synonym: t-cell surface antigen t4/leu-3.
|
|
Source:
|
 |
Human immunodeficiency virus 1. Organism_taxid: 11676. Strain: yu2. Gene: env. Expressed in: homo sapiens. Expression_system_taxid: 9606. Expression_system_cell_line: embryonic cell line 293. Homo sapiens. Human.
|
|
Resolution:
|
 |
|
3.30Å
|
R-factor:
|
0.202
|
R-free:
|
0.269
|
|
|
Authors:
|
 |
C.-C.Huang,M.Tang,J.Robinson,R.Wyatt,P.D.Kwong
|
Key ref:
|
 |
C.C.Huang
et al.
(2007).
Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4.
Science,
317,
1930-1934.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
14-Jun-07
|
Release date:
|
25-Sep-07
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P35961
(ENV_HV1Y2) -
Envelope glycoprotein gp160 from Human immunodeficiency virus type 1 group M subtype B (isolate YU-2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
843 a.a.
319 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P01730
(CD4_HUMAN) -
T-cell surface glycoprotein CD4 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
458 a.a.
178 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
317:1930-1934
(2007)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4.
|
|
C.C.Huang,
S.N.Lam,
P.Acharya,
M.Tang,
S.H.Xiang,
S.S.Hussan,
R.L.Stanfield,
J.Robinson,
J.Sodroski,
I.A.Wilson,
R.Wyatt,
C.A.Bewley,
P.D.Kwong.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and
facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are
many antibodies that react with the co-receptor binding site on gp120. We
applied nuclear magnetic resonance and crystallographic techniques to analyze
the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody
412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated
regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly
different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces
similar structural rearrangements in gp120. These results now provide a
framework for understanding HIV-1 interactions with the CCR5 N terminus during
viral entry and define a conserved site on gp120, whose recognition of
sulfotyrosine engenders posttranslational mimicry by the immune system.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Structure of the tyrosine-sulfated antibody 412d in
complex with HIV-1 gp120 and CD4. (A) Ribbon representation. CD4
is yellow, the heavy chain of Fab 412d is dark blue, the light
chain is cyan, and gp120 is gray, except for the V3 loop, which
is orange. The CDR H3 loop of 412d is red, with sulfotyrosines
depicted in stick representation. (B) Close-up, with molecular
surface of gp120 in gray and sulfotyrosines of 412d (red labels)
and select residues of gp120 (black labels) in stick
representation. Dotted lines represent coordinating hydrogen
bonds between gp120 and the sulfate group of Tys100c^412d. The
sulfate of Tys 100c^412d makes a full complement of ionic
interactions: a salt bridge to Arg 298^gp120 and hydrogen bonds
to the side-chain nitrogen of Asn 302^gp120, the side-chain
hydroxyl of Thr 303^gp120, and the main-chain amides of
302^gp120, 303^gp120, and 441^gp120 (34).
|
 |
Figure 4.
Fig. 4. A conserved site for binding sulfotyrosine on HIV-1
gp120. (A) Alterations of the V3 base to accommodate binding of
sulfotyrosine. The gp120 (gray) region around the V3 loop
(orange) is illustrated in ribbon diagram, with an overlying
semitransparent surface for unbound (left panel) and bound
(right panel) conformations. Binding of the CCR5 N terminus
(purple) or the 412d CDR H3 (red), each with two sulfotyrosines
(stick representation, with red and purple labels), alters the
V3 base, forming a sulfotyrosine binding pocket and a rigid
ß-hairpin. (B) Close-up of the conserved sulfotyrosine
binding pocket. The orientation shown is similar to that in
Figs. 2B and 3B [ 90° from (A)
about a diagonal axis, as defined by the long axis of the V3
from (A)]. Tys 14^CCR5 is shown in purple, with Tys 100c^412d in
red. Select residues of gp120 are shown in stick representation
and labeled in black. Hydrogen bonds coordinating the buried
sulfate groups in each are depicted with dotted lines.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2007,
317,
1930-1934)
copyright 2007.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Schön,
N.Madani,
A.B.Smith,
J.M.Lalonde,
and
E.Freire
(2011).
Some binding-related drug properties are dependent on thermodynamic signature.
|
| |
Chem Biol Drug Des,
77,
161-165.
|
 |
|
|
|
|
 |
C.Zhong,
and
J.Ding
(2011).
New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4.
|
| |
Acta Biochim Biophys Sin (Shanghai),
43,
337-338.
|
 |
|
|
|
|
 |
L.T.Da,
J.M.Quan,
and
Y.D.Wu
(2011).
Understanding the binding mode and function of BMS-488043 against HIV-1 viral entry.
|
| |
Proteins,
79,
1810-1819.
|
 |
|
|
|
|
 |
M.Kim,
Z.Y.Sun,
K.D.Rand,
X.Shi,
L.Song,
Y.Cheng,
A.F.Fahmy,
S.Majumdar,
G.Ofek,
Y.Yang,
P.D.Kwong,
J.H.Wang,
J.R.Engen,
G.Wagner,
and
E.L.Reinherz
(2011).
Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization.
|
| |
Nat Struct Mol Biol,
18,
1235-1243.
|
 |
|
|
|
|
 |
W.R.Liu,
Y.S.Wang,
and
W.Wan
(2011).
Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach.
|
| |
Mol Biosyst,
7,
38-47.
|
 |
|
|
|
|
 |
A.Jekle,
M.Chhabra,
A.Lochner,
S.Meier,
E.Chow,
M.Brandt,
S.Sankuratri,
N.Cammack,
and
G.Heilek
(2010).
Epitope switching as a novel escape mechanism of HIV to CCR5 monoclonal antibodies.
|
| |
Antimicrob Agents Chemother,
54,
734-741.
|
 |
|
|
|
|
 |
B.Wu,
E.Y.Chien,
C.D.Mol,
G.Fenalti,
W.Liu,
V.Katritch,
R.Abagyan,
A.Brooun,
P.Wells,
F.C.Bi,
D.J.Hamel,
P.Kuhn,
T.M.Handel,
V.Cherezov,
and
R.C.Stevens
(2010).
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
|
| |
Science,
330,
1066-1071.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Ofek,
F.J.Guenaga,
W.R.Schief,
J.Skinner,
D.Baker,
R.Wyatt,
and
P.D.Kwong
(2010).
Elicitation of structure-specific antibodies by epitope scaffolds.
|
| |
Proc Natl Acad Sci U S A,
107,
17880-17887.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Q.Del Prete,
G.J.Leslie,
B.Haggarty,
A.P.Jordan,
J.Romano,
and
J.A.Hoxie
(2010).
Distinct molecular pathways to X4 tropism for a V3-truncated human immunodeficiency virus type 1 lead to differential coreceptor interactions and sensitivity to a CXCR4 antagonist.
|
| |
J Virol,
84,
8777-8789.
|
 |
|
|
|
|
 |
I.Douagi,
M.N.Forsell,
C.Sundling,
S.O'Dell,
Y.Feng,
P.Dosenovic,
Y.Li,
R.Seder,
K.Loré,
J.R.Mascola,
R.T.Wyatt,
and
G.B.Karlsson Hedestam
(2010).
Influence of novel CD4 binding-defective HIV-1 envelope glycoprotein immunogens on neutralizing antibody and T-cell responses in nonhuman primates.
|
| |
J Virol,
84,
1683-1695.
|
 |
|
|
|
|
 |
J.C.Tilton,
C.B.Wilen,
C.A.Didigu,
R.Sinha,
J.E.Harrison,
C.Agrawal-Gamse,
E.A.Henning,
F.D.Bushman,
J.N.Martin,
S.G.Deeks,
and
R.W.Doms
(2010).
A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5.
|
| |
J Virol,
84,
10863-10876.
|
 |
|
|
|
|
 |
J.M.Pfaff,
C.B.Wilen,
J.E.Harrison,
J.F.Demarest,
B.Lee,
R.W.Doms,
and
J.C.Tilton
(2010).
HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells.
|
| |
J Virol,
84,
6505-6514.
|
 |
|
|
|
|
 |
J.N.Dybowski,
D.Heider,
and
D.Hoffmann
(2010).
Prediction of co-receptor usage of HIV-1 from genotype.
|
| |
PLoS Comput Biol,
6,
e1000743.
|
 |
|
|
|
|
 |
J.S.Klein,
and
P.J.Bjorkman
(2010).
Few and far between: how HIV may be evading antibody avidity.
|
| |
PLoS Pathog,
6,
e1000908.
|
 |
|
|
|
|
 |
J.da Silva,
M.Coetzer,
R.Nedellec,
C.Pastore,
and
D.E.Mosier
(2010).
Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region.
|
| |
Genetics,
185,
293-303.
|
 |
|
|
|
|
 |
M.Hertje,
M.Zhou,
and
U.Dietrich
(2010).
Inhibition of HIV-1 entry: multiple keys to close the door.
|
| |
ChemMedChem,
5,
1825-1835.
|
 |
|
|
|
|
 |
M.L.Bellows,
and
C.A.Floudas
(2010).
Computational methods for de novo protein design and its applications to the human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7, and histone demethylases.
|
| |
Curr Drug Targets,
11,
264-278.
|
 |
|
|
|
|
 |
M.M.Freeman,
M.S.Seaman,
S.Rits-Volloch,
X.Hong,
C.Y.Kao,
D.D.Ho,
and
B.Chen
(2010).
Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody.
|
| |
Structure,
18,
1632-1641.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Pancera,
S.Majeed,
Y.E.Ban,
L.Chen,
C.C.Huang,
L.Kong,
Y.D.Kwon,
J.Stuckey,
T.Zhou,
J.E.Robinson,
W.R.Schief,
J.Sodroski,
R.Wyatt,
and
P.D.Kwong
(2010).
Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.
|
| |
Proc Natl Acad Sci U S A,
107,
1166-1171.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Raska,
and
J.Novak
(2010).
Involvement of envelope-glycoprotein glycans in HIV-1 biology and infection.
|
| |
Arch Immunol Ther Exp (Warsz),
58,
191-208.
|
 |
|
|
|
|
 |
M.Seitz,
P.Rusert,
K.Moehle,
A.Trkola,
and
J.A.Robinson
(2010).
Peptidomimetic inhibitors targeting the CCR5-binding site on the human immunodeficiency virus type-1 gp120 glycoprotein complexed to CD4.
|
| |
Chem Commun (Camb),
46,
7754-7756.
|
 |
|
|
|
|
 |
N.Manolios,
M.Ali,
and
V.Bender
(2010).
T-cell antigen receptor (TCR) transmembrane peptides: A new paradigm for the treatment of autoimmune diseases.
|
| |
Cell Adh Migr,
4,
273-283.
|
 |
|
|
|
|
 |
R.Diskin,
P.M.Marcovecchio,
and
P.J.Bjorkman
(2010).
Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity.
|
| |
Nat Struct Mol Biol,
17,
608-613.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Pejchal,
L.M.Walker,
R.L.Stanfield,
S.K.Phogat,
W.C.Koff,
P.Poignard,
D.R.Burton,
and
I.A.Wilson
(2010).
Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1.
|
| |
Proc Natl Acad Sci U S A,
107,
11483-11488.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.H.Xiang,
A.Finzi,
B.Pacheco,
K.Alexander,
W.Yuan,
C.Rizzuto,
C.C.Huang,
P.D.Kwong,
and
J.Sodroski
(2010).
A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer.
|
| |
J Virol,
84,
3147-3161.
|
 |
|
|
|
|
 |
X.Dervillez,
V.Klaukien,
R.Dürr,
J.Koch,
A.Kreutz,
T.Haarmann,
M.Stoll,
D.Lee,
T.Carlomagno,
B.Schnierle,
K.Möbius,
C.Königs,
C.Griesinger,
and
U.Dietrich
(2010).
Peptide ligands selected with CD4-induced epitopes on native dualtropic HIV-1 envelope proteins mimic extracellular coreceptor domains and bind to HIV-1 gp120 independently of coreceptor usage.
|
| |
J Virol,
84,
10131-10138.
|
 |
|
|
|
|
 |
X.Jiang,
V.Burke,
M.Totrov,
C.Williams,
T.Cardozo,
M.K.Gorny,
S.Zolla-Pazner,
and
X.P.Kong
(2010).
Conserved structural elements in the V3 crown of HIV-1 gp120.
|
| |
Nat Struct Mol Biol,
17,
955-961.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Mor,
E.Segal,
B.Mester,
B.Arshava,
O.Rosen,
F.X.Ding,
J.Russo,
A.Dafni,
F.Schvartzman,
T.Scherf,
F.Naider,
and
J.Anglister
(2009).
Mimicking the structure of the V3 epitope bound to HIV-1 neutralizing antibodies.
|
| |
Biochemistry,
48,
3288-3303.
|
 |
|
|
|
|
 |
B.Dey,
K.Svehla,
L.Xu,
D.Wycuff,
T.Zhou,
G.Voss,
A.Phogat,
B.K.Chakrabarti,
Y.Li,
G.Shaw,
P.D.Kwong,
G.J.Nabel,
J.R.Mascola,
and
R.T.Wyatt
(2009).
Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.
|
| |
PLoS Pathog,
5,
e1000445.
|
 |
|
|
|
|
 |
B.L.Walter,
A.E.Armitage,
S.C.Graham,
T.de Oliveira,
P.Skinhøj,
E.Y.Jones,
D.I.Stuart,
A.J.McMichael,
B.Chesebro,
and
A.K.Iversen
(2009).
Functional characteristics of HIV-1 subtype C compatible with increased heterosexual transmissibility.
|
| |
AIDS,
23,
1047-1057.
|
 |
|
|
|
|
 |
C.Agrawal-Gamse,
F.H.Lee,
B.Haggarty,
A.P.Jordan,
Y.Yi,
B.Lee,
R.G.Collman,
J.A.Hoxie,
R.W.Doms,
and
M.M.Laakso
(2009).
Adaptive mutations in a human immunodeficiency virus type 1 envelope protein with a truncated V3 loop restore function by improving interactions with CD4.
|
| |
J Virol,
83,
11005-11015.
|
 |
|
|
|
|
 |
C.H.Jen,
K.L.Moore,
and
J.A.Leary
(2009).
Pattern and temporal sequence of sulfation of CCR5 N-terminal peptides by tyrosylprotein sulfotransferase-2: an assessment of the effects of N-terminal residues.
|
| |
Biochemistry,
48,
5332-5338.
|
 |
|
|
|
|
 |
D.E.Mosier
(2009).
How HIV changes its tropism: evolution and adaptation?
|
| |
Curr Opin HIV AIDS,
4,
125-130.
|
 |
|
|
|
|
 |
D.T.Lodowski,
and
K.Palczewski
(2009).
Chemokine receptors and other G protein-coupled receptors.
|
| |
Curr Opin HIV AIDS,
4,
88-95.
|
 |
|
|
|
|
 |
E.T.Brower,
A.Schön,
J.C.Klein,
and
E.Freire
(2009).
Binding thermodynamics of the N-terminal peptide of the CCR5 coreceptor to HIV-1 envelope glycoprotein gp120.
|
| |
Biochemistry,
48,
779-785.
|
 |
|
|
|
|
 |
F.Baleux,
L.Loureiro-Morais,
Y.Hersant,
P.Clayette,
F.Arenzana-Seisdedos,
D.Bonnaffé,
and
H.Lortat-Jacob
(2009).
A synthetic CD4-heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry.
|
| |
Nat Chem Biol,
5,
743-748.
|
 |
|
|
|
|
 |
J.Isaacman-Beck,
E.A.Hermann,
Y.Yi,
S.J.Ratcliffe,
J.Mulenga,
S.Allen,
E.Hunter,
C.A.Derdeyn,
and
R.G.Collman
(2009).
Heterosexual transmission of human immunodeficiency virus type 1 subtype C: Macrophage tropism, alternative coreceptor use, and the molecular anatomy of CCR5 utilization.
|
| |
J Virol,
83,
8208-8220.
|
 |
|
|
|
|
 |
J.P.Moore,
and
D.R.Kuritzkes
(2009).
A pièce de resistance: how HIV-1 escapes small molecule CCR5 inhibitors.
|
| |
Curr Opin HIV AIDS,
4,
118-124.
|
 |
|
|
|
|
 |
J.da Silva
(2009).
Amino Acid covariation in a functionally important human immunodeficiency virus type 1 protein region is associated with population subdivision.
|
| |
Genetics,
182,
265-275.
|
 |
|
|
|
|
 |
K.L.Davis,
F.Bibollet-Ruche,
H.Li,
J.M.Decker,
O.Kutsch,
L.Morris,
A.Salomon,
A.Pinter,
J.A.Hoxie,
B.H.Hahn,
P.D.Kwong,
and
G.M.Shaw
(2009).
Human immunodeficiency virus type 2 (HIV-2)/HIV-1 envelope chimeras detect high titers of broadly reactive HIV-1 V3-specific antibodies in human plasma.
|
| |
J Virol,
83,
1240-1259.
|
 |
|
|
|
|
 |
K.M.Nolan,
G.Q.Del Prete,
A.P.Jordan,
B.Haggarty,
J.Romano,
G.J.Leslie,
and
J.A.Hoxie
(2009).
Characterization of a human immunodeficiency virus type 1 V3 deletion mutation that confers resistance to CCR5 inhibitors and the ability to use aplaviroc-bound receptor.
|
| |
J Virol,
83,
3798-3809.
|
 |
|
|
|
|
 |
K.Wiederhold,
and
D.Fasshauer
(2009).
Is assembly of the SNARE complex enough to fuel membrane fusion?
|
| |
J Biol Chem,
284,
13143-13152.
|
 |
|
|
|
|
 |
L.S.Simpson,
J.Z.Zhu,
T.S.Widlanski,
and
M.J.Stone
(2009).
Regulation of chemokine recognition by site-specific tyrosine sulfation of receptor peptides.
|
| |
Chem Biol,
16,
153-161.
|
 |
|
|
|
|
 |
M.Honda,
R.Wang,
W.P.Kong,
M.Kanekiyo,
W.Akahata,
L.Xu,
K.Matsuo,
K.Natarajan,
H.Robinson,
T.E.Asher,
D.A.Price,
D.C.Douek,
D.H.Margulies,
and
G.J.Nabel
(2009).
Different vaccine vectors delivering the same antigen elicit CD8+ T cell responses with distinct clonotype and epitope specificity.
|
| |
J Immunol,
183,
2425-2434.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.S.Hanes,
K.M.Jude,
J.M.Berger,
R.A.Bonomo,
and
T.M.Handel
(2009).
Structural and biochemical characterization of the interaction between KPC-2 beta-lactamase and beta-lactamase inhibitor protein.
|
| |
Biochemistry,
48,
9185-9193.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Ray
(2009).
Maraviroc in the treatment of HIV infection.
|
| |
Drug Des Devel Ther,
2,
151-161.
|
 |
|
|
|
|
 |
P.A.Galanakis,
N.G.Kandias,
A.K.Rizos,
D.Morikis,
E.Krambovitis,
and
G.A.Spyroulias
(2009).
NMR evidence of charge-dependent interaction between various PND V3 and CCR5 N-terminal peptides.
|
| |
Biopolymers,
92,
94.
|
 |
|
|
|
|
 |
P.D.Kwong,
and
I.A.Wilson
(2009).
HIV-1 and influenza antibodies: seeing antigens in new ways.
|
| |
Nat Immunol,
10,
573-578.
|
 |
|
|
|
|
 |
P.Pugach,
N.Ray,
P.J.Klasse,
T.J.Ketas,
E.Michael,
R.W.Doms,
B.Lee,
and
J.P.Moore
(2009).
Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities.
|
| |
Virology,
387,
296-302.
|
 |
|
|
|
|
 |
R.A.Ogert,
L.Ba,
Y.Hou,
C.Buontempo,
P.Qiu,
J.Duca,
N.Murgolo,
P.Buontempo,
R.Ralston,
and
J.A.Howe
(2009).
Structure-function analysis of human immunodeficiency virus type 1 gp120 amino acid mutations associated with resistance to the CCR5 coreceptor antagonist vicriviroc.
|
| |
J Virol,
83,
12151-12163.
|
 |
|
|
|
|
 |
R.Berro,
R.W.Sanders,
M.Lu,
P.J.Klasse,
and
J.P.Moore
(2009).
Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry.
|
| |
PLoS Pathog,
5,
e1000548.
|
 |
|
|
|
|
 |
T.Ghosh,
K.Chattopadhyay,
M.Marschall,
P.Karmakar,
P.Mandal,
and
B.Ray
(2009).
Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation.
|
| |
Glycobiology,
19,
2.
|
 |
|
|
|
|
 |
V.Burke,
C.Williams,
M.Sukumaran,
S.S.Kim,
H.Li,
X.H.Wang,
M.K.Gorny,
S.Zolla-Pazner,
and
X.P.Kong
(2009).
Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens.
|
| |
Structure,
17,
1538-1546.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.C.Olson,
and
J.M.Jacobson
(2009).
CCR5 monoclonal antibodies for HIV-1 therapy.
|
| |
Curr Opin HIV AIDS,
4,
104-111.
|
 |
|
|
|
|
 |
A.K.Dhillon,
R.L.Stanfield,
M.K.Gorny,
C.Williams,
S.Zolla-Pazner,
and
I.A.Wilson
(2008).
Structure determination of an anti-HIV-1 Fab 447-52D-peptide complex from an epitaxially twinned data set.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
792-802.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.M.Chain,
M.Noursadeghi,
M.Gardener,
J.Tsang,
and
E.Wright
(2008).
HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor.
|
| |
Vaccine,
26,
5752-5759.
|
 |
|
|
|
|
 |
C.C.Liu,
A.V.Mack,
M.L.Tsao,
J.H.Mills,
H.S.Lee,
H.Choe,
M.Farzan,
P.G.Schultz,
and
V.V.Smider
(2008).
Protein evolution with an expanded genetic code.
|
| |
Proc Natl Acad Sci U S A,
105,
17688-17693.
|
 |
|
|
|
|
 |
C.Pastori,
A.Clivio,
L.Diomede,
R.Consonni,
G.M.De Mori,
R.Longhi,
G.Colombo,
and
L.Lopalco
(2008).
Two amino acid substitutions within the first external loop of CCR5 induce human immunodeficiency virus-blocking antibodies in mice and chickens.
|
| |
J Virol,
82,
4125-4134.
|
 |
|
|
|
|
 |
C.Seibert,
C.T.Veldkamp,
F.C.Peterson,
B.T.Chait,
B.F.Volkman,
and
T.P.Sakmar
(2008).
Sequential tyrosine sulfation of CXCR4 by tyrosylprotein sulfotransferases.
|
| |
Biochemistry,
47,
11251-11262.
|
 |
|
|
|
|
 |
E.J.Adams,
P.Strop,
S.Shin,
Y.H.Chien,
and
K.C.Garcia
(2008).
An autonomous CDR3delta is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by gammadelta T cells.
|
| |
Nat Immunol,
9,
777-784.
|
 |
|
|
|
|
 |
G.S.Baldwin,
M.F.Bailey,
B.P.Shehan,
I.Sims,
and
R.S.Norton
(2008).
Tyrosine modification enhances metal-ion binding.
|
| |
Biochem J,
416,
77-84.
|
 |
|
|
|
|
 |
J.E.Harrison,
J.B.Lynch,
L.J.Sierra,
L.A.Blackburn,
N.Ray,
R.G.Collman,
and
R.W.Doms
(2008).
Baseline resistance of primary human immunodeficiency virus type 1 strains to the CXCR4 inhibitor AMD3100.
|
| |
J Virol,
82,
11695-11704.
|
 |
|
|
|
|
 |
J.M.White,
S.E.Delos,
M.Brecher,
and
K.Schornberg
(2008).
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
|
| |
Crit Rev Biochem Mol Biol,
43,
189-219.
|
 |
|
|
|
|
 |
K.Michler,
B.J.Connell,
W.D.Venter,
W.S.Stevens,
A.Capovilla,
and
M.A.Papathanasopoulos
(2008).
Genotypic characterization and comparison of full-length envelope glycoproteins from South African HIV type 1 subtype C primary isolates that utilize CCR5 and/or CXCR4.
|
| |
AIDS Res Hum Retroviruses,
24,
743-751.
|
 |
|
|
|
|
 |
L.Vangelista,
M.Secchi,
and
P.Lusso
(2008).
Rational design of novel HIV-1 entry inhibitors by RANTES engineering.
|
| |
Vaccine,
26,
3008-3015.
|
 |
|
|
|
|
 |
M.N.Forsell,
B.Dey,
A.Mörner,
K.Svehla,
S.O'dell,
C.M.Högerkorp,
G.Voss,
R.Thorstensson,
G.M.Shaw,
J.R.Mascola,
G.B.Karlsson Hedestam,
and
R.T.Wyatt
(2008).
B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.
|
| |
PLoS Pathog,
4,
e1000171.
|
 |
|
|
|
|
 |
N.Varadarajan,
G.Georgiou,
and
B.L.Iverson
(2008).
An engineered protease that cleaves specifically after sulfated tyrosine.
|
| |
Angew Chem Int Ed Engl,
47,
7861-7863.
|
 |
|
|
|
|
 |
P.Pugach,
T.J.Ketas,
E.Michael,
and
J.P.Moore
(2008).
Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors.
|
| |
Virology,
377,
401-407.
|
 |
|
|
|
|
 |
S.N.Lam,
P.Acharya,
R.Wyatt,
P.D.Kwong,
and
C.A.Bewley
(2008).
Tyrosine-sulfate isosteres of CCR5 N-terminus as tools for studying HIV-1 entry.
|
| |
Bioorg Med Chem,
16,
10113-10120.
|
 |
|
|
|
|
 |
S.Naganawa,
M.Yokoyama,
T.Shiino,
T.Suzuki,
Y.Ishigatsubo,
A.Ueda,
A.Shirai,
M.Takeno,
S.Hayakawa,
S.Sato,
O.Tochikubo,
S.Kiyoura,
K.Sawada,
T.Ikegami,
T.Kanda,
K.Kitamura,
and
H.Sato
(2008).
Net positive charge of HIV-1 CRF01_AE V3 sequence regulates viral sensitivity to humoral immunity.
|
| |
PLoS ONE,
3,
e3206.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |