spacer
spacer

PDBsum entry 2ps3

Go to PDB code: 
protein Protein-protein interface(s) links
Metal transport PDB id
2ps3
Jmol
Contents
Protein chains
265 a.a. *
Waters ×49
* Residue conservation analysis
PDB id:
2ps3
Name: Metal transport
Title: Structure and metal binding properties of znua, a periplasmic zinc transporter from escherichia coli
Structure: High-affinity zinc uptake system protein znua. Chain: a, b. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.47Å     R-factor:   0.243     R-free:   0.303
Authors: L.A.Yatsunyk,L.R.Kim,I.I.Vorontsov,A.C.Rosenzweig
Key ref: L.A.Yatsunyk et al. (2008). Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli. J Biol Inorg Chem, 13, 271-288. PubMed id: 18027003
Date:
04-May-07     Release date:   05-Jun-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P39172  (ZNUA_ECOLI) -  High-affinity zinc uptake system protein ZnuA
Seq:
Struc:
310 a.a.
265 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     periplasmic space   1 term 
  Biological process     cell adhesion   5 terms 
  Biochemical function     metal ion binding     1 term  

 

 
J Biol Inorg Chem 13:271-288 (2008)
PubMed id: 18027003  
 
 
Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli.
L.A.Yatsunyk, J.A.Easton, L.R.Kim, S.A.Sugarbaker, B.Bennett, R.M.Breece, I.I.Vorontsov, D.L.Tierney, M.W.Crowder, A.C.Rosenzweig.
 
  ABSTRACT  
 
ZnuA is the periplasmic Zn(2+)-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn(2+)-bound, and Co(2+)-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn(2+) with Co(2+) results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn(2+) periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn(2+) (estimated K (d) < 20 nM), Co(2+), Ni(2+), Cu(2+), Cu(+), and Cd(2+), but not Mn(2+). Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn(2+) substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21240623 M.Falconi, F.Oteri, F.Di Palma, S.Pandey, A.Battistoni, and A.Desideri (2011).
Structural-dynamical investigation of the ZnuA histidine-rich loop: involvement in zinc management and transport.
  J Comput Aided Mol Des, 25, 181-194.  
21338480 R.Gabbianelli, R.Scotti, S.Ammendola, P.Petrarca, L.Nicolini, and A.Battistoni (2011).
Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells.
  BMC Microbiol, 11, 36.  
20497229 T.Eitinger, D.A.Rodionov, M.Grote, and E.Schneider (2011).
Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions.
  FEMS Microbiol Rev, 35, 3.  
20617164 M.Stork, M.P.Bos, I.Jongerius, N.de Kok, I.Schilders, V.E.Weynants, J.T.Poolman, and J.Tommassen (2010).
An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential.
  PLoS Pathog, 6, e1000969.  
20097857 P.Petrarca, S.Ammendola, P.Pasquali, and A.Battistoni (2010).
The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage.
  J Bacteriol, 192, 1553-1564.  
20379570 Z.Xiao, and A.G.Wedd (2010).
The challenges of determining metal-protein affinities.
  Nat Prod Rep, 27, 768-789.  
19377097 A.I.Graham, S.Hunt, S.L.Stokes, N.Bramall, J.Bunch, A.G.Cox, C.W.McLeod, and R.K.Poole (2009).
Severe Zinc Depletion of Escherichia coli: ROLES FOR HIGH AFFINITY ZINC BINDING BY ZinT, ZINC TRANSPORT AND ZINC-INDEPENDENT PROTEINS.
  J Biol Chem, 284, 18377-18389.  
19617361 C.Linke, T.T.Caradoc-Davies, P.G.Young, T.Proft, and E.N.Baker (2009).
The laminin-binding protein Lbp from Streptococcus pyogenes is a zinc receptor.
  J Bacteriol, 191, 5814-5823.
PDB code: 3gi1
19091747 K.S.Davidge, G.Sanguinetti, C.H.Yee, A.G.Cox, C.W.McLeod, C.E.Monk, B.E.Mann, R.Motterlini, and R.K.Poole (2009).
Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional Regulators.
  J Biol Chem, 284, 4516-4524.  
19103921 L.M.Davis, T.Kakuda, and V.J.DiRita (2009).
A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization.
  J Bacteriol, 191, 1631-1640.  
19103764 M.Sabri, S.Houle, and C.M.Dozois (2009).
Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection.
  Infect Immun, 77, 1155-1164.  
18950480 J.Cui, J.A.Kaandorp, and C.M.Lloyd (2008).
Simulating in vitro transcriptional response of zinc homeostasis system in Escherichia coli.
  BMC Syst Biol, 2, 89.  
18641131 N.C.Ammerman, M.S.Rahman, and A.F.Azad (2008).
Characterization of Sec-translocon-dependent extracytoplasmic proteins of Rickettsia typhi.
  J Bacteriol, 190, 6234-6242.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.