PDBsum entry 2obl

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
Protein chain
346 a.a. *
Waters ×232
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Structural and biochemical analysis of a prototypical atpase type iii secretion system of pathogenic bacteria
Structure: Escn. Chain: a. Fragment: c-terminal domain, residues 103-446. Engineered: yes. Mutation: yes
Source: Escherichia coli o127:h6. Organism_taxid: 574521. Strain: e2348/69. Gene: escn. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
1.80Å     R-factor:   0.197     R-free:   0.232
Authors: R.Zarivach,M.Vuckovic,W.Deng,B.B.Finlay,N.C.J.Strynadka
Key ref:
R.Zarivach et al. (2007). Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol, 14, 131-137. PubMed id: 17237797 DOI: 10.1038/nsmb1196
19-Dec-06     Release date:   30-Jan-07    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
B7UMA6  (B7UMA6_ECO27) -  Translocator EscN
446 a.a.
346 a.a.*
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     type III protein secretion system complex   2 terms 
  Biological process     biosynthetic process   3 terms 
  Biochemical function     nucleotide binding     4 terms  


DOI no: 10.1038/nsmb1196 Nat Struct Mol Biol 14:131-137 (2007)
PubMed id: 17237797  
Structural analysis of a prototypical ATPase from the type III secretion system.
R.Zarivach, M.Vuckovic, W.Deng, B.B.Finlay, N.C.Strynadka.
The type III secretion system (T3SS) ATPase is the conserved and essential inner-membrane component involved in the initial stages of selective secretion of specialized T3SS virulence effector proteins from the bacterial cytoplasm through to the infected host cell, a process crucial to subsequent pathogenicity. Here we present the 1.8-A-resolution crystal structure of the catalytic domain of the prototypical T3SS ATPase EscN from enteropathogenic Escherichia coli (EPEC). Along with in vitro and in vivo mutational analysis, our data show that the T3SS ATPases share similarity with the F1 ATPases but have important structural and sequence differences that dictate their unique secretory role. We also show that T3SS ATPase activity is dependent on EscN oligomerization and describe the molecular features and possible functional implications of a hexameric ring model.
  Selected figure(s)  
Figure 5.
Figure 5. Functional mutants of EscN. (a) Previously isolated functional mutants of the Salmonella ATPase InvC (blue) mapped on the structure of EscN with bound ATP (gold), delineating the position of the active site. See Supplementary Figure 2 for the corresponding numbering in Salmonella. (b) Functional mutants created and characterized in this study. Shown are V393P (yellow) and the mutation of the active site residue that cooperatively binds the ATP of the adjacent monomer, Arg366 (blue).
Figure 6.
Figure 6. The hexameric T3SS and F1 ATPases. Right, the [3] [3] heterohexamer of the F1 ATPase, with known membrane orientation delineated by the binding of its membrane-anchored -subunit (purple) within the inner pore of the ATPase hexameric ring. In yellow is the helical domain at the C terminus of the F1 ATPases, which is absent in EscN. Left, the EscN homohexamer (blue), with the predicted docking site for the helical T3SS chaperone (PDB 1XKP^41; red), in complex with its cognate and partially unfolded effector (green). The functional point mutation V393P lies at the edge of the chaperone-binding surface (yellow).
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2007, 14, 131-137) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23222644 P.Abrusci, M.Vergara-Irigaray, S.Johnson, M.D.Beeby, D.R.Hendrixson, P.Roversi, M.E.Friede, J.E.Deane, G.J.Jensen, C.M.Tang, and S.M.Lea (2013).
Architecture of the major component of the type III secretion system export apparatus.
  Nat Struct Mol Biol, 20, 99.
PDB code: 4a5p
21112241 L.J.Worrall, E.Lameignere, and N.C.Strynadka (2011).
Structural overview of the bacterial injectisome.
  Curr Opin Microbiol, 14, 3-8.  
21182592 P.J.Matteï, E.Faudry, V.Job, T.Izoré, I.Attree, and A.Dessen (2011).
Membrane targeting and pore formation by the type III secretion system translocon.
  FEBS J, 278, 414-426.  
21278755 T.Ibuki, K.Imada, T.Minamino, T.Kato, T.Miyata, and K.Namba (2011).
Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases.
  Nat Struct Mol Biol, 18, 277-282.
PDB code: 3ajw
21170340 A.Blanco-Toribio, S.Muyldermans, G.Frankel, and L...Fernández (2010).
Direct injection of functional single-domain antibodies from E. coli into human cells.
  PLoS One, 5, e15227.  
20453832 A.Diepold, M.Amstutz, S.Abel, I.Sorg, U.Jenal, and G.R.Cornelis (2010).
Deciphering the assembly of the Yersinia type III secretion injectisome.
  EMBO J, 29, 1928-1940.  
20140193 C.A.Cooper, K.Zhang, S.N.Andres, Y.Fang, N.A.Kaniuk, M.Hannemann, J.H.Brumell, L.J.Foster, M.S.Junop, and B.K.Coombes (2010).
Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.
  PLoS Pathog, 6, e1000751.  
20482311 G.R.Cornelis (2010).
The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery.
  Biol Chem, 391, 745-751.  
20306492 L.J.Worrall, M.Vuckovic, and N.C.Strynadka (2010).
Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA.
  Protein Sci, 19, 1091-1096.
PDB codes: 2x49 2x4a
20015680 T.C.Marlovits, and C.E.Stebbins (2010).
Type III secretion systems shape up as they ship out.
  Curr Opin Microbiol, 13, 47-52.  
20141759 T.Rathinavelan, L.Zhang, W.L.Picking, D.D.Weis, R.N.De Guzman, and W.Im (2010).
A repulsive electrostatic mechanism for protein export through the type III secretion apparatus.
  Biophys J, 98, 452-461.  
20034934 W.Deng, Hoog, H.B.Yu, Y.Li, M.A.Croxen, N.A.Thomas, J.L.Puente, L.J.Foster, and B.B.Finlay (2010).
A comprehensive proteomic analysis of the type III secretome of Citrobacter rodentium.
  J Biol Chem, 285, 6790-6800.  
19114489 C.Lorenz, and D.Büttner (2009).
Functional characterization of the type III secretion ATPase HrcN from the plant pathogen Xanthomonas campestris pv. vesicatoria.
  J Bacteriol, 191, 1414-1428.  
19396171 J.L.Hodgkinson, A.Horsley, D.Stabat, M.Simon, S.Johnson, P.C.da Fonseca, E.P.Morris, J.S.Wall, S.M.Lea, and A.J.Blocker (2009).
Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout.
  Nat Struct Mol Biol, 16, 477-485.  
18836182 A.D.Gazi, M.Bastaki, S.N.Charova, E.A.Gkougkoulia, E.A.Kapellios, N.J.Panopoulos, and M.Kokkinidis (2008).
Evidence for a Coiled-coil Interaction Mode of Disordered Proteins from Bacterial Type III Secretion Systems.
  J Biol Chem, 283, 34062-34068.  
18708502 C.B.Stone, D.L.Johnson, D.C.Bulir, J.D.Gilchrist, and J.B.Mahony (2008).
Characterization of the putative type III secretion ATPase CdsN (Cpn0707) of Chlamydophila pneumoniae.
  J Bacteriol, 190, 6580-6588.  
18393958 P.Keyser, M.Elofsson, S.Rosell, and H.Wolf-Watz (2008).
Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria.
  J Intern Med, 264, 17-29.  
18451864 R.Zarivach, W.Deng, M.Vuckovic, H.B.Felise, H.V.Nguyen, S.I.Miller, B.B.Finlay, and N.C.Strynadka (2008).
Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS.
  Nature, 453, 124-127.
PDB codes: 3bzl 3bzo 3bzp 3bzr 3bzs 3bzt 3bzv 3bzx 3bzy 3bzz 3c00 3c01 3c03
18258424 T.F.Moraes, T.Spreter, and N.C.Strynadka (2008).
Piecing together the type III injectisome of bacterial pathogens.
  Curr Opin Struct Biol, 18, 258-266.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.