spacer
spacer

PDBsum entry 2npp

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
2npp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
582 a.a. *
388 a.a. *
308 a.a. *
Ligands
DAL-LEU-ACB-ARG-
1ZN-FGA-DAM
×2
Metals
_MN ×4
* Residue conservation analysis
PDB id:
2npp
Name: Hydrolase/hydrolase inhibitor
Title: Structure of the protein phosphatase 2a holoenzyme
Structure: Protein phosphatase 2, regulatory subunit a (pr 65), alpha isoform. Chain: a, d. Fragment: scaffolding subunit. Synonym: protein phosphatase 2a. Engineered: yes. Serine/threonine-protein phosphatase 2a 56 kda regulatory subunit gamma isoform. Chain: b, e.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: ppp2r1a. Expressed in: escherichia coli. Expression_system_taxid: 469008. Gene: ppp2r5c, kiaa0044. Gene: ppp2ca. Expressed in: spodoptera frugiperda.
Biol. unit: Tetramer (from PQS)
Resolution:
3.30Å     R-factor:   0.255     R-free:   0.299
Authors: Y.Xu,Y.Chen,Y.Xing,Y.Chao,Y.Shi
Key ref:
Y.Xu et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239-1251. PubMed id: 17174897 DOI: 10.1016/j.cell.2006.11.033
Date:
28-Oct-06     Release date:   12-Dec-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P30153  (2AAA_HUMAN) -  Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
589 a.a.
582 a.a.
Protein chains
Pfam   ArchSchema ?
Q13362  (2A5G_HUMAN) -  Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit gamma isoform from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
524 a.a.
388 a.a.
Protein chains
Pfam   ArchSchema ?
P67775  (PP2AA_HUMAN) -  Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform from Homo sapiens
Seq:
Struc:
309 a.a.
308 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains C, F: E.C.3.1.3.16  - protein-serine/threonine phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. O-phospho-L-seryl-[protein] + H2O = L-seryl-[protein] + phosphate
2. O-phospho-L-threonyl-[protein] + H2O = L-threonyl-[protein] + phosphate
O-phospho-L-seryl-[protein]
+ H2O
= L-seryl-[protein]
+ phosphate
O-phospho-L-threonyl-[protein]
+ H2O
= L-threonyl-[protein]
+ phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.cell.2006.11.033 Cell 127:1239-1251 (2006)
PubMed id: 17174897  
 
 
Structure of the protein phosphatase 2A holoenzyme.
Y.Xu, Y.Xing, Y.Chen, Y.Chao, Z.Lin, E.Fan, J.W.Yu, S.Strack, P.D.Jeffrey, Y.Shi.
 
  ABSTRACT  
 
Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Overall Structure of the Heterotrimeric PP2A Holoenzyme Bound to Microcystin-LR (MCLR)
(A) Overall structure of the PP2A holoenzyme bound to MCLR. The scaffolding (Aα), catalytic (Cα), and regulatory B′/PR61 (B′-γ1) subunits are shown in green, blue, and yellow, respectively. MCLR is shown in magenta. B′-γ1 interacts with both Aα and Cα through extensive interfaces. Cα interacts with Aα as described (Xing et al., 2006). Three views are shown here to reveal the essential features of the holoenzyme. Surprisingly, B′-γ1 adopts a structure that closely resembles that of the scaffolding subunit (discussed in detail later).
(B) A surface representation of the PP2A holoenzyme. Aα and B′-γ1 are shown in surface representation. Cα is shown in backbone worm to highlight the observation that the carboxyl terminus of Cα binds to a surface groove at the interface between Aα and B′-γ1. Figures 1A, 2A, 4A, and 4E were prepared using GRASP (Nicholls et al., 1991); all other structural figures were made using MOLSCRIPT (Kraulis, 1991).
Figure 4.
Figure 4. Interactions among the Three Components of the PP2A Holoenzyme
(A) A surface potential representation of the PP2A holoenzyme. The electrostatic surface potential is shown for Aα and B′-γ1. Note the acidic environment at the interface between Aα and B′-γ1. The carboxyl terminus of Cα extends out into a negatively charged surface groove at the interface between Aα and B′-γ1. Two areas are circled. Area 1 involves a protein interface between Cα and B′-γ1. Area 2 centers on the recognition of the carboxyl terminus of Cα by Aα and B′-γ1.
(B) A stereo view of the atomic interactions between Cα and B′-γ1 in area 1. This interface involves the HEAT-like repeats 6–8 of B′-γ1 and the α5 helix region of Cα. Side chains are colored orange. This interface contains a number of hydrogen bonds, which are represented by red dashed lines.
(C) A stereo view of the recognition of the carboxyl terminus of Cα by Aα and B′-γ1 in area 2. This interface involves the HEAT-like repeats 5 and 6 of B′-γ1 and HEAT repeats 1 and 2 of Aα. Most residues from the carboxyl terminus of Cα participate in specific interactions. There is a good mixture of hydrogen bonds and van der Waals interactions at this interface.
(D) Additional interactions with Cα are provided by the extended loop within HEAT-like motif 2 of B′-γ1.
(E) A surface representation of the PP2A holoenzyme to highlight the binding mode of the regulatory B′/PR61 subunit. Note that B′-γ1 uses its convex surface to interact with the conserved ridge of Aα.
(F) A stereo view of the atomic interactions between Aα and B′-γ1. This interface is rich in van der Waals interactions and involves six HEAT repeats of Aα.
 
  The above figures are reprinted by permission from Cell Press: Cell (2006, 127, 1239-1251) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21157432 A.C.Eitelhuber, S.Warth, G.Schimmack, M.Düwel, K.Hadian, K.Demski, W.Beisker, H.Shinohara, T.Kurosaki, V.Heissmeyer, and D.Krappmann (2011).
Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation.
  EMBO J, 30, 594-605.  
21497765 D.Kitagawa, I.Flückiger, J.Polanowska, D.Keller, J.Reboul, and P.Gönczy (2011).
PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos.
  Dev Cell, 20, 550-562.  
21874008 E.A.Foley, M.Maldonado, and T.M.Kapoor (2011).
Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase.
  Nat Cell Biol, 13, 1265-1271.  
21233840 I.Cristóbal, L.Garcia-Orti, C.Cirauqui, M.M.Alonso, M.J.Calasanz, and M.D.Odero (2011).
PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect.
  Leukemia, 25, 606-614.  
21329884 J.T.Rodgers, R.O.Vogel, and P.Puigserver (2011).
Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt.
  Mol Cell, 41, 471-479.  
21381030 M.K.McConechy, M.S.Anglesio, S.E.Kalloger, W.Yang, J.Senz, C.Chow, A.Heravi-Moussavi, G.B.Morin, A.M.Mes-Masson, M.S.Carey, J.N.McAlpine, J.S.Kwon, L.M.Prentice, N.Boyd, S.P.Shah, C.B.Gilks, and D.G.Huntsman (2011).
Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas.
  J Pathol, 223, 567-573.  
20875039 S.J.Norwood, D.J.Shaw, N.P.Cowieson, D.J.Owen, R.D.Teasdale, and B.M.Collins (2011).
Assembly and solution structure of the core retromer protein complex.
  Traffic, 12, 56-71.
PDB codes: 3lh8 3lh9 3lha
21288162 S.R.Pereira, V.M.Vasconcelos, and A.Antunes (2011).
The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins.
  Crit Rev Toxicol, 41, 83.  
20133745 A.Grinthal, I.Adamovic, B.Weiner, M.Karplus, and N.Kleckner (2010).
PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis.
  Proc Natl Acad Sci U S A, 107, 2467-2472.  
  20160490 A.K.Freeman, V.Dapic, and A.N.Monteiro (2010).
Negative regulation of CHK2 activity by protein phosphatase 2A is modulated by DNA damage.
  Cell Cycle, 9, 736-747.  
20017541 A.Saraf, E.A.Oberg, and S.Strack (2010).
Molecular determinants for PP2A substrate specificity: charged residues mediate dephosphorylation of tyrosine hydroxylase by the PP2A/B' regulatory subunit.
  Biochemistry, 49, 986-995.  
20451393 C.U.Stirnimann, E.Petsalaki, R.B.Russell, and C.W.Müller (2010).
WD40 proteins propel cellular networks.
  Trends Biochem Sci, 35, 565-574.  
20473327 G.P.Shouse, Y.Nobumori, and X.Liu (2010).
A B56gamma mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A.
  Oncogene, 29, 3933-3941.  
19933700 I.S.Seong, J.M.Woda, J.J.Song, A.Lloret, P.D.Abeyrathne, C.J.Woo, G.Gregory, J.M.Lee, V.C.Wheeler, T.Walz, R.E.Kingston, J.F.Gusella, R.A.Conlon, and M.E.Macdonald (2010).
Huntingtin facilitates polycomb repressive complex 2.
  Hum Mol Genet, 19, 573-583.  
20092282 J.L.McConnell, G.R.Watkins, S.E.Soss, H.S.Franz, L.R.McCorvey, B.W.Spiller, W.J.Chazin, and B.E.Wadzinski (2010).
Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination.
  Biochemistry, 49, 1713-1718.  
21050448 P.J.Khandelwal, S.B.Dumanis, L.R.Feng, K.Maguire-Zeiss, G.Rebeck, H.A.Lashuel, and C.E.Moussa (2010).
Parkinson-related parkin reduces α-Synuclein phosphorylation in a gene transfer model.
  Mol Neurodegener, 5, 47.  
20636478 S.Finnegan, A.M.Mackey, and T.G.Cotter (2010).
A stress survival response in retinal cells mediated through inhibition of the serine/threonine phosphatase PP2A.
  Eur J Neurosci, 32, 322-334.  
19536808 E.Kunttas-Tatli, A.Bose, B.Kahali, C.P.Bishop, and A.P.Bidwai (2009).
Functional dissection of Timekeeper (Tik) implicates opposite roles for CK2 and PP2A during Drosophila neurogenesis.
  Genesis, 47, 647-658.  
19777061 F.Kippert, and D.L.Gerloff (2009).
Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH.
  PLoS One, 4, e7148.  
19727590 H.Fu, H.Ma, C.Zheng, J.Lü, X.Yu, C.Li, Y.Peng, G.Liao, W.Liu, Y.Xiao, Y.Liu, and D.W.Li (2009).
Molecular cloning and differential expression patterns of the regulatory subunit B' gene of PP2A in goldfish, Carassius auratus.
  Sci China C Life Sci, 52, 724-732.  
19750005 H.G.Chen, W.J.Han, M.Deng, J.Qin, D.Yuan, J.P.Liu, L.Xiao, L.Gong, S.Liang, J.Zhang, Y.Liu, and D.W.Li (2009).
Transcriptional regulation of PP2A-A alpha is mediated by multiple factors including AP-2alpha, CREB, ETS-1, and SP-1.
  PLoS One, 4, e7019.  
  19838339 H.L.Ma, Y.L.Peng, L.Gong, W.B.Liu, S.Sun, J.Liu, C.B.Zheng, H.Fu, D.Yuan, J.Zhao, P.C.Chen, S.S.Xie, X.M.Zeng, Y.M.Xiao, Y.Liu, and D.W.Li (2009).
The Goldfish SG2NA Gene Encodes Two alpha-Type Regulatory Subunits for PP-2A and Displays Distinct Developmental Expression Pattern.
  Gene Regul Syst Bio, 3, 115-129.  
19835610 J.Guergnon, U.Derewenda, J.R.Edelson, and D.L.Brautigan (2009).
Mapping of protein phosphatase-6 association with its SAPS domain regulatory subunit using a model of helical repeats.
  BMC Biochem, 10, 24.  
18782753 M.Goudreault, L.M.D'Ambrosio, M.J.Kean, M.J.Mullin, B.G.Larsen, A.Sanchez, S.Chaudhry, G.I.Chen, F.Sicheri, A.I.Nesvizhskii, R.Aebersold, B.Raught, and A.C.Gingras (2009).
A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein.
  Mol Cell Proteomics, 8, 157-171.  
19029245 M.J.Van Kanegan, and S.Strack (2009).
The protein phosphatase 2A regulatory subunits B'beta and B'delta mediate sustained TrkA neurotrophin receptor autophosphorylation and neuronal differentiation.
  Mol Cell Biol, 29, 662-674.  
19818709 M.Kong, D.Ditsworth, T.Lindsten, and C.B.Thompson (2009).
Alpha4 is an essential regulator of PP2A phosphatase activity.
  Mol Cell, 36, 51-60.  
18992256 M.S.Kelker, R.Page, and W.Peti (2009).
Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors.
  J Mol Biol, 385, 11-21.
PDB codes: 3e7a 3e7b
19672620 P.Matre, C.Meyer, and C.Lillo (2009).
Diversity in subcellular targeting of the PP2A B'eta subfamily members.
  Planta, 230, 935-945.  
19576221 S.A.Kennedy, M.L.Frazier, M.Steiniger, A.M.Mast, W.F.Marzluff, and M.R.Redinbo (2009).
Crystal structure of the HEAT domain from the Pre-mRNA processing factor Symplekin.
  J Mol Biol, 392, 115-128.
PDB code: 3gs3
19748337 S.G.Brohawn, J.R.Partridge, J.R.Whittle, and T.U.Schwartz (2009).
The nuclear pore complex has entered the atomic age.
  Structure, 17, 1156-1168.  
19535438 S.Li, C.Brignole, R.Marcellus, S.Thirlwell, O.Binda, M.J.McQuoid, D.Ashby, H.Chan, Z.Zhang, M.J.Miron, D.C.Pallas, and P.E.Branton (2009).
The adenovirus E4orf4 protein induces G2/M arrest and cell death by blocking protein phosphatase 2A activity regulated by the B55 subunit.
  J Virol, 83, 8340-8352.  
19330349 S.M.País, M.A.González, M.T.Téllez-Iñón, and D.A.Capiati (2009).
Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses.
  Planta, 230, 13-25.  
19156129 T.Glatter, A.Wepf, R.Aebersold, and M.Gstaiger (2009).
An integrated workflow for charting the human interaction proteome: insights into the PP2A system.
  Mol Syst Biol, 5, 237.  
19277525 Y.Shi (2009).
Assembly and structure of protein phosphatase 2A.
  Sci China C Life Sci, 52, 135-146.  
19879837 Y.Shi (2009).
Serine/threonine phosphatases: mechanism through structure.
  Cell, 139, 468-484.  
19747079 Z.Li, and J.B.Stock (2009).
Protein carboxyl methylation and the biochemistry of memory.
  Biol Chem, 390, 1087-1096.  
19716788 Z.Xu, B.Cetin, M.Anger, U.S.Cho, W.Helmhart, K.Nasmyth, and W.Xu (2009).
Structure and function of the PP2A-shugoshin interaction.
  Mol Cell, 35, 426-441.
PDB code: 3fga
18214640 A.A.Sablina, and W.C.Hahn (2008).
SV40 small T antigen and PP2A phosphatase in cell transformation.
  Cancer Metastasis Rev, 27, 137-146.  
18488168 B.Wang, P.Zhang, and Q.Wei (2008).
Recent progress on the structure of Ser/Thr protein phosphatases.
  Sci China C Life Sci, 51, 487-494.  
17537547 C.E.Zhang, Q.Tian, W.Wei, J.H.Peng, G.P.Liu, X.W.Zhou, Q.Wang, D.W.Wang, and J.Z.Wang (2008).
Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus.
  Neurobiol Aging, 29, 1654-1665.  
18410380 C.de Chiara, R.P.Menon, and A.Pastore (2008).
Structural bases for recognition of Anp32/LANP proteins.
  FEBS J, 275, 2548-2560.
PDB code: 2jqd
17803193 D.L.Lizotte, J.J.Blakeslee, A.Siryaporn, J.T.Heath, and A.DeLong (2008).
A PP2A active site mutant impedes growth and causes misregulation of native catalytic subunit expression.
  J Cell Biochem, 103, 1309-1325.  
18213449 D.Perrotti, and P.Neviani (2008).
Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias.
  Cancer Metastasis Rev, 27, 159-168.  
18158287 D.Ricotta, J.Hansen, C.Preiss, D.Teichert, and S.Höning (2008).
Characterization of a protein phosphatase 2A holoenzyme that dephosphorylates the clathrin adaptors AP-1 and AP-2.
  J Biol Chem, 283, 5510-5517.  
18715871 G.I.Chen, S.Tisayakorn, C.Jorgensen, L.M.D'Ambrosio, M.Goudreault, and A.C.Gingras (2008).
PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4.
  J Biol Chem, 283, 29273-29284.  
17967874 G.P.Shouse, X.Cai, and X.Liu (2008).
Serine 15 phosphorylation of p53 directs its interaction with B56gamma and the tumor suppressor activity of B56gamma-specific protein phosphatase 2A.
  Mol Cell Biol, 28, 448-456.  
18246411 H.K.Arnold, and R.C.Sears (2008).
A tumor suppressor role for PP2A-B56alpha through negative regulation of c-Myc and other key oncoproteins.
  Cancer Metastasis Rev, 27, 147-158.  
18329957 J.Westermarck, and W.C.Hahn (2008).
Multiple pathways regulated by the tumor suppressor PP2A in transformation.
  Trends Mol Med, 14, 152-160.  
18448228 J.Z.Wang, and F.Liu (2008).
Microtubule-associated protein tau in development, degeneration and protection of neurons.
  Prog Neurobiol, 85, 148-175.  
18550542 K.Hong, L.Lou, S.Gupta, F.Ribeiro-Neto, and D.L.Altschuler (2008).
A Novel Epac-Rap-PP2A Signaling Module Controls cAMP-dependent Akt Regulation.
  J Biol Chem, 283, 23129-23138.  
18211894 L.Yan, V.A.Lavin, L.R.Moser, Q.Cui, C.Kanies, and E.Yang (2008).
PP2A regulates the pro-apoptotic activity of FOXO1.
  J Biol Chem, 283, 7411-7420.  
18200608 O.Okhrimenko, and I.Jelesarov (2008).
A survey of the year 2006 literature on applications of isothermal titration calorimetry.
  J Mol Recognit, 21, 1.  
18165705 P.Y.Wang, J.Weng, S.Lee, and R.G.Anderson (2008).
The N terminus controls sterol binding while the C terminus regulates the scaffolding function of OSBP.
  J Biol Chem, 283, 8034-8045.  
18543252 S.J.Yoo, R.H.Jimenez, J.A.Sanders, J.M.Boylan, D.L.Brautigan, and P.A.Gruppuso (2008).
The alpha4-containing form of protein phosphatase 2A in liver and hepatic cells.
  J Cell Biochem, 105, 290-300.  
18663356 S.Kotadia, L.R.Kao, S.A.Comerford, R.T.Jones, R.E.Hammer, and T.L.Megraw (2008).
PP2A-dependent disruption of centrosome replication and cytoskeleton organization in Drosophila by SV40 small tumor antigen.
  Oncogene, 27, 6334-6346.  
18596935 S.Ortega-Gutiérrez, D.Leung, S.Ficarro, E.C.Peters, and B.F.Cravatt (2008).
Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice.
  PLoS ONE, 3, e2486.  
18291659 V.Janssens, S.Longin, and J.Goris (2008).
PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail).
  Trends Biochem Sci, 33, 113-121.  
18957415 V.R.Ruvolo, S.M.Kurinna, K.B.Karanjeet, T.F.Schuster, A.M.Martelli, J.A.McCubrey, and P.P.Ruvolo (2008).
PKR Regulates B56{alpha}-mediated BCL2 Phosphatase Activity in Acute Lymphoblastic Leukemia-derived REH Cells.
  J Biol Chem, 283, 35474-35485.  
  18432318 W.B.Liu, Y.Li, L.Zhang, H.G.Chen, S.Sun, J.P.Liu, Y.Liu, and D.W.Li (2008).
Differential expression of the catalytic subunits for PP-1 and PP-2A and the regulatory subunits for PP-2A in mouse eye.
  Mol Vis, 14, 762-773.  
18042541 Y.C.Kuo, K.Y.Huang, C.H.Yang, Y.S.Yang, W.Y.Lee, and C.W.Chiang (2008).
Regulation of Phosphorylation of Thr-308 of Akt, Cell Proliferation, and Survival by the B55{alpha} Regulatory Subunit Targeting of the Protein Phosphatase 2A Holoenzyme to Akt.
  J Biol Chem, 283, 1882-1892.  
18394995 Y.Xing, Z.Li, Y.Chen, J.B.Stock, P.D.Jeffrey, and Y.Shi (2008).
Structural mechanism of demethylation and inactivation of protein phosphatase 2A.
  Cell, 133, 154-163.
PDB codes: 3c5v 3c5w
18922469 Y.Xu, Y.Chen, P.Zhang, P.D.Jeffrey, and Y.Shi (2008).
Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation.
  Mol Cell, 31, 873-885.
PDB code: 3dw8
17540176 A.A.Sablina, W.Chen, J.D.Arroyo, L.Corral, M.Hector, S.E.Bulmer, J.A.DeCaprio, and W.C.Hahn (2007).
The tumor suppressor PP2A Abeta regulates the RalA GTPase.
  Cell, 129, 969-982.  
17325038 C.S.Yang, H.W.Xin, J.B.Kelley, A.Spencer, D.L.Brautigan, and B.M.Paschal (2007).
Ligand binding to the androgen receptor induces conformational changes that regulate phosphatase interactions.
  Mol Cell Biol, 27, 3390-3404.  
17318227 G.B.Moorhead, L.Trinkle-Mulcahy, and A.Ulke-Lemée (2007).
Emerging roles of nuclear protein phosphatases.
  Nat Rev Mol Cell Biol, 8, 234-244.  
17550305 H.Hombauer, D.Weismann, I.Mudrak, C.Stanzel, T.Fellner, D.H.Lackner, and E.Ogris (2007).
Generation of active protein phosphatase 2A is coupled to holoenzyme assembly.
  PLoS Biol, 5, e155.  
17355870 J.Al-Bassam, N.A.Larsen, A.A.Hyman, and S.C.Harrison (2007).
Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.
  Structure, 15, 355-362.
PDB code: 2of3
17535922 J.H.Ahn, J.Y.Sung, T.McAvoy, A.Nishi, V.Janssens, J.Goris, P.Greengard, and A.C.Nairn (2007).
The B''/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A.
  Proc Natl Acad Sci U S A, 104, 9876-9881.  
17944932 J.H.Smetana, and N.I.Zanchin (2007).
Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL).
  FEBS J, 274, 5891-5904.  
17632053 M.Mumby (2007).
PP2A: unveiling a reluctant tumor suppressor.
  Cell, 130, 21-24.  
17632056 M.R.Junttila, P.Puustinen, M.Niemelä, R.Ahola, H.Arnold, T.Böttzauw, R.Ala-aho, C.Nielsen, J.Ivaska, Y.Taya, S.L.Lu, S.Lin, E.K.Chan, X.J.Wang, R.Grènman, J.Kast, T.Kallunki, R.Sears, V.M.Kähäri, and J.Westermarck (2007).
CIP2A inhibits PP2A in human malignancies.
  Cell, 130, 51-62.  
17635907 S.Longin, K.Zwaenepoel, J.V.Louis, S.Dilworth, J.Goris, and V.Janssens (2007).
Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit.
  J Biol Chem, 282, 26971-26980.  
17636256 T.D.Hurley, J.Yang, L.Zhang, K.D.Goodwin, Q.Zou, M.Cortese, A.K.Dunker, and A.A.DePaoli-Roach (2007).
Structural basis for regulation of protein phosphatase 1 by inhibitor-2.
  J Biol Chem, 282, 28874-28883.
PDB codes: 2o8a 2o8g
17608567 U.S.Cho, S.Morrone, A.A.Sablina, J.D.Arroyo, W.C.Hahn, and W.Xu (2007).
Structural basis of PP2A inhibition by small t antigen.
  PLoS Biol, 5, e202.
PDB code: 2pf4
17529992 Y.Chen, Y.Xu, Q.Bao, Y.Xing, Z.Li, Z.Lin, J.B.Stock, P.D.Jeffrey, and Y.Shi (2007).
Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40.
  Nat Struct Mol Biol, 14, 527-534.
PDB code: 2pkg
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer