spacer
spacer

PDBsum entry 2kdf

Go to PDB code: 
protein Protein-protein interface(s) links
Protein binding PDB id
2kdf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
111 a.a. *
76 a.a. *
* Residue conservation analysis
PDB id:
2kdf
Name: Protein binding
Title: Nmr structure of minor s5a (196-306):k48 linked diubiquitin species
Structure: 26s proteasome non-atpase regulatory subunit 4. Chain: a. Fragment: unp residues 196-306, s5a fragment. Synonym: 26s proteasome regulatory subunit s5a, rpn10, multiubiquitin chain-binding protein, antisecretory factor 1, asf, af. Engineered: yes. Ubiquitin. Chain: b, c. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: psmd4, mcb1. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: rps27a, uba80, ubcep1, uba52, ubcep2, ubb, ubc.
NMR struc: 7 models
Authors: N.Zhang,Q.Wang,A.Ehlinger,L.Randles,J.W.Lary,Y.Kang,A.Haririnia, J.L.Cole,D.Fushman,K.J.Walters
Key ref: N.Zhang et al. (2009). Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol Cell, 35, 280-290. PubMed id: 19683493
Date:
06-Jan-09     Release date:   01-Sep-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P55036  (PSMD4_HUMAN) -  26S proteasome non-ATPase regulatory subunit 4 from Homo sapiens
Seq:
Struc:
377 a.a.
111 a.a.
Protein chains
Pfam   ArchSchema ?
P0CG48  (UBC_HUMAN) -  Polyubiquitin-C from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
685 a.a.
76 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
Mol Cell 35:280-290 (2009)
PubMed id: 19683493  
 
 
Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13.
N.Zhang, Q.Wang, A.Ehlinger, L.Randles, J.W.Lary, Y.Kang, A.Haririnia, A.J.Storaska, J.L.Cole, D.Fushman, K.J.Walters.
 
  ABSTRACT  
 
Degradation by the proteasome typically requires substrate ubiquitination. Two ubiquitin receptors exist in the proteasome, S5a/Rpn10 and Rpn13. Whereas Rpn13 has only one ubiquitin-binding surface, S5a binds ubiquitin with two independent ubiquitin-interacting motifs (UIMs). Here, we use nuclear magnetic resonance (NMR) and analytical ultracentrifugation to define at atomic level resolution how S5a binds K48-linked diubiquitin, in which K48 of one ubiquitin subunit (the "proximal" one) is covalently bonded to G76 of the other (the "distal" subunit). We demonstrate that S5a's UIMs bind the two subunits simultaneously with a preference for UIM2 binding to the proximal subunit while UIM1 binds to the distal one. In addition, NMR experiments reveal that Rpn13 and S5a bind K48-linked diubiquitin simultaneously with subunit specificity, and a model structure of S5a and Rpn13 bound to K48-linked polyubiquitin is provided. Altogether, our data demonstrate that S5a is highly adaptive and cooperative toward binding ubiquitin chains.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21214861 M.Bieri, A.H.Kwan, M.Mobli, G.F.King, J.P.Mackay, and P.R.Gooley (2011).
Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination.
  FEBS J, 278, 704-715.  
20622874 A.Bremm, S.M.Freund, and D.Komander (2010).
Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne.
  Nat Struct Mol Biol, 17, 939-947.
PDB code: 2xew
21095592 A.Peth, T.Uchiki, and A.L.Goldberg (2010).
ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation.
  Mol Cell, 40, 671-681.  
20949063 A.X.Song, C.J.Zhou, Y.Peng, X.C.Gao, Z.R.Zhou, Q.S.Fu, J.Hong, D.H.Lin, and H.Y.Hu (2010).
Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains.
  PLoS One, 5, e13202.  
20739285 C.Riedinger, J.Boehringer, J.F.Trempe, E.D.Lowe, N.R.Brown, K.Gehring, M.E.Noble, C.Gordon, and J.A.Endicott (2010).
Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12.
  J Biol Chem, 285, 33992-34003.
PDB code: 2x5n
21111228 F.Ikeda, N.Crosetto, and I.Dikic (2010).
What determines the specificity and outcomes of ubiquitin signaling?
  Cell, 143, 677-681.  
20181483 F.Liu, and K.J.Walters (2010).
Multitasking with ubiquitin through multivalent interactions.
  Trends Biochem Sci, 35, 352-360.  
  20357899 H.Wu, Y.C.Lo, and S.C.Lin (2010).
Recent advances in polyubiquitin chain recognition.
  F1000 Biol Rep, 2, 1-5.  
  20823512 J.F.Trempe, N.R.Brown, M.E.Noble, and J.A.Endicott (2010).
A new crystal form of Lys48-linked diubiquitin.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 994-998.
PDB code: 3m3j
20541996 J.M.Winget, and T.Mayor (2010).
The diversity of ubiquitin recognition: hot spots and varied specificity.
  Mol Cell, 38, 627-635.  
20471946 X.Chen, B.H.Lee, D.Finley, and K.J.Walters (2010).
Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2.
  Mol Cell, 38, 404-415.
PDB codes: 2kqz 2kr0
20064467 D.Zhang, T.Chen, I.Ziv, R.Rosenzweig, Y.Matiuhin, V.Bronner, M.H.Glickman, and D.Fushman (2009).
Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor.
  Mol Cell, 36, 1018-1033.  
19773779 I.Dikic, S.Wakatsuki, and K.J.Walters (2009).
Ubiquitin-binding domains - from structures to functions.
  Nat Rev Mol Cell Biol, 10, 659-671.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer