spacer
spacer

PDBsum entry 2j2s

Go to PDB code: 
protein metals links
Transcription regulation PDB id
2j2s

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
72 a.a. *
Metals
_ZN ×2
* Residue conservation analysis
PDB id:
2j2s
Name: Transcription regulation
Title: Solution structure of the nonmethyl-cpg-binding cxxc domain of the leukaemia-associated mll histone methyltransferase
Structure: Zinc finger protein hrx. Chain: a. Fragment: residues 1146-1214. Synonym: all-1, trithorax-like protein, cxxc domain of mll-1. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 20 models
Authors: M.D.Allen,C.G.Grummitt,C.Hilcenko,S.Young-Min,L.M.Tonkin,C.M.Johnson, M.Bycroft,A.J.Warren
Key ref:
M.D.Allen et al. (2006). Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J, 25, 4503-4512. PubMed id: 16990798 DOI: 10.1038/sj.emboj.7601340
Date:
17-Aug-06     Release date:   21-Aug-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q03164  (KMT2A_HUMAN) -  Histone-lysine N-methyltransferase 2A from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3969 a.a.
72 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.1.1.364  - [histone H3]-lysine(4) N-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-lysyl4-[histone H3] + S-adenosyl-L-methionine = N6-methyl-L- lysyl4-[histone H3] + S-adenosyl-L-homocysteine + H+
L-lysyl(4)-[histone H3]
+ S-adenosyl-L-methionine
= N(6)-methyl-L- lysyl(4)-[histone H3]
+ S-adenosyl-L-homocysteine
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/sj.emboj.7601340 EMBO J 25:4503-4512 (2006)
PubMed id: 16990798  
 
 
Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase.
M.D.Allen, C.G.Grummitt, C.Hilcenko, S.Y.Min, L.M.Tonkin, C.M.Johnson, S.M.Freund, M.Bycroft, A.J.Warren.
 
  ABSTRACT  
 
Methylation of CpG dinucleotides is the major epigenetic modification of mammalian genomes, critical for regulating chromatin structure and gene activity. The mixed-lineage leukaemia (MLL) CXXC domain selectively binds nonmethyl-CpG DNA, and is required for transformation by MLL fusion proteins that commonly arise from recurrent chromosomal translocations in infant and secondary treatment-related acute leukaemias. To elucidate the molecular basis of nonmethyl-CpG DNA recognition, we determined the structure of the human MLL CXXC domain by multidimensional NMR spectroscopy. The CXXC domain has a novel fold in which two zinc ions are each coordinated tetrahedrally by four conserved cysteine ligands provided by two CGXCXXC motifs and two distal cysteine residues. We have identified the CXXC domain DNA binding interface by means of chemical shift perturbation analysis, cross-saturation transfer and site-directed mutagenesis. In particular, we have shown that residues in an extended surface loop are in close contact with the DNA. These data provide a template for the design of specifically targeted therapeutics for poor prognosis MLL-associated leukaemias.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Solution structure of the MLL CXXC domain. (A) An overlay of the backbone atoms of the 20 lowest energy structures in stereo. (B) A ribbon representation of the lowest energy structure (same orientation as in (A)), prepared using the program PyMOL (http://www.pymol.org). Zn ions are shown as spheres. (C) A ribbon representation of the Zn coordination sites in MLL (PyMOL).
Figure 2.
Figure 2 Ribbon representation of the elaborate turn in the CXXC domain of MLL showing the side chains of the residues from the KFGG motif and the second Zn coordination site (PyMOL). An extended loop is formed between residues G1181 and C1189.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: EMBO J (2006, 25, 4503-4512) copyright 2006.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21155757 B.W.Robinson, G.Germano, Y.Song, J.Abrams, M.Scott, I.Guariento, N.Tiso, F.Argenton, G.Basso, J.Rhodes, J.P.Kanki, A.T.Look, R.J.Balice-Gordon, and C.A.Felix (2011).
mll ortholog containing functional domains of human MLL is expressed throughout the zebrafish lifespan and in haematopoietic tissues.
  Br J Haematol, 152, 307-321.  
21311766 C.Frauer, A.Rottach, D.Meilinger, S.Bultmann, K.Fellinger, S.Hasenöder, M.Wang, W.Qin, J.Söding, F.Spada, and H.Leonhardt (2011).
Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1.
  PLoS One, 6, e16627.  
  21407193 C.Xu, C.Bian, R.Lam, A.Dong, and J.Min (2011).
The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain.
  Nat Commun, 2, 227.
PDB codes: 3qmb 3qmc 3qmd 3qmg 3qmh 3qmi
21163962 J.Song, O.Rechkoblit, T.H.Bestor, and D.J.Patel (2011).
Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation.
  Science, 331, 1036-1040.
PDB codes: 3pt6 3pt9 3pta
21243710 R.Z.Jurkowska, T.P.Jurkowski, and A.Jeltsch (2011).
Structure and function of mammalian DNA methyltransferases.
  Chembiochem, 12, 206-222.  
20541477 A.G.Muntean, J.Tan, K.Sitwala, Y.Huang, J.Bronstein, J.A.Connelly, V.Basrur, K.S.Elenitoba-Johnson, and J.L.Hess (2010).
The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis.
  Cancer Cell, 17, 609-621.  
  21339843 H.Hashimoto, P.M.Vertino, and X.Cheng (2010).
Molecular coupling of DNA methylation and histone methylation.
  Epigenomics, 2, 657-669.  
21079648 H.Zhang, X.Zhang, E.Clark, M.Mulcahey, S.Huang, and Y.G.Shi (2010).
TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine.
  Cell Res, 20, 1390-1393.  
20236310 M.S.Cosgrove, and A.Patel (2010).
Mixed lineage leukemia: a structure-function perspective of the MLL1 protein.
  FEBS J, 277, 1832-1842.  
20683471 S.C.Wu, and Y.Zhang (2010).
Active DNA demethylation: many roads lead to Rome.
  Nat Rev Mol Cell Biol, 11, 607-620.  
20010842 T.Cierpicki, L.E.Risner, J.Grembecka, S.M.Lukasik, R.Popovic, M.Omonkowska, D.D.Shultis, N.J.Zeleznik-Le, and J.H.Bushweller (2010).
Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia.
  Nat Struct Mol Biol, 17, 62-68.
PDB code: 2kkf
20378711 T.Clouaire, J.I.de Las Heras, C.Merusi, and I.Stancheva (2010).
Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA.
  Nucleic Acids Res, 38, 4620-4634.  
20210320 X.Cheng, and R.M.Blumenthal (2010).
Coordinated chromatin control: structural and functional linkage of DNA and histone methylation.
  Biochemistry, 49, 2999-3008.  
20054296 Y.Okada, K.Yamagata, K.Hong, T.Wakayama, and Y.Zhang (2010).
A role for the elongator complex in zygotic paternal genome demethylation.
  Nature, 463, 554-558.  
18818702 A.Murati, C.Gervais, N.Carbuccia, P.Finetti, N.Cervera, J.Adélaïde, S.Struski, E.Lippert, F.Mugneret, I.Tigaud, D.Penther, C.Bastard, B.Poppe, F.Speleman, L.Baranger, I.Luquet, P.Cornillet-Lefebvre, N.Nadal, F.Nguyen-Khac, C.Pérot, S.Olschwang, F.Bertucci, M.Chaffanet, M.Lessard, M.J.Mozziconacci, and D.Birnbaum (2009).
Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases.
  Leukemia, 23, 85-94.  
19158185 A.Ruzov, E.Savitskaya, J.A.Hackett, J.P.Reddington, A.Prokhortchouk, M.J.Madej, N.Chekanov, M.Li, D.S.Dunican, E.Prokhortchouk, S.Pennings, and R.R.Meehan (2009).
The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development.
  Development, 136, 729-738.  
19060922 C.Bach, D.Mueller, S.Buhl, M.P.Garcia-Cuellar, and R.K.Slany (2009).
Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2.
  Oncogene, 28, 815-823.  
19852741 C.Bach, and R.K.Slany (2009).
Molecular pathology of mixed-lineage leukemia.
  Future Oncol, 5, 1271-1281.  
19182210 F.Pendino, E.Nguyen, I.Jonassen, B.Dysvik, A.Azouz, M.Lanotte, E.Ségal-Bendirdjian, and J.R.Lillehaug (2009).
Functional involvement of RINF, retinoid-inducible nuclear factor (CXXC5), in normal and tumoral human myelopoiesis.
  Blood, 113, 3172-3181.  
  19411852 L.M.Iyer, M.Tahiliani, A.Rao, and L.Aravind (2009).
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
  Cell Cycle, 8, 1698-1710.  
19289854 M.Liedtke, and M.L.Cleary (2009).
Therapeutic targeting of MLL.
  Blood, 113, 6061-6068.  
19372391 M.Tahiliani, K.P.Koh, Y.Shen, W.A.Pastor, H.Bandukwala, Y.Brudno, S.Agarwal, L.M.Iyer, D.R.Liu, L.Aravind, and A.Rao (2009).
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
  Science, 324, 930-935.  
  19535349 R.K.Slany (2009).
The molecular biology of mixed lineage leukemia.
  Haematologica, 94, 984-993.  
18945682 C.Qian, S.Li, J.Jakoncic, L.Zeng, M.J.Walsh, and M.M.Zhou (2008).
Structure and Hemimethylated CpG Binding of the SRA Domain from Human UHRF1.
  J Biol Chem, 283, 34490-34494.
PDB code: 3dwh
18200608 O.Okhrimenko, and I.Jelesarov (2008).
A survey of the year 2006 literature on applications of isothermal titration calorimetry.
  J Mol Recognit, 21, 1.  
18224408 Y.Dou, and J.L.Hess (2008).
Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia.
  Int J Hematol, 87, 10-18.  
17984971 S.Lall (2007).
Primers on chromatin.
  Nat Struct Mol Biol, 14, 1110-1115.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer