PDBsum entry 2iad

Go to PDB code: 
protein Protein-protein interface(s) links
Mhc ii PDB id
Protein chains
187 a.a. *
201 a.a. *
Waters ×114
* Residue conservation analysis
PDB id:
Name: Mhc ii
Title: Class ii mhc i-ad in complex with an influenza hemagglutinin 126-138
Structure: Mhc class ii i-ad. Chain: a. Fragment: residues 126p - 138p of chain b are covalently li influenza hemagglutinin peptide. Engineered: yes. Mhc class ii i-ad. Chain: b. Fragment: residues 126p - 138p of chain b are covalently li influenza hemagglutinin peptide.
Source: Fragment: residues 126p - 138p of chain b. Mus musculus. House mouse. Organism_taxid: 10090. Strain: balb-c. Cell_line: s2. Organ: tail. Expressed in: drosophila melanogaster. Expression_system_taxid: 7227.
Biol. unit: Tetramer (from PQS)
2.40Å     R-factor:   0.253     R-free:   0.308
Authors: C.A.Scott,P.A.Peterson,L.Teyton,I.A.Wilson
Key ref:
C.A.Scott et al. (1998). Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity, 8, 319-329. PubMed id: 9529149 DOI: 10.1016/S1074-7613(00)80537-3
13-Mar-98     Release date:   18-Nov-98    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P04228  (HA2D_MOUSE) -  H-2 class II histocompatibility antigen, A-D alpha chain
256 a.a.
187 a.a.*
Protein chain
Pfam   ArchSchema ?
P01921  (HB2D_MOUSE) -  H-2 class II histocompatibility antigen, A-D beta chain
265 a.a.
201 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 21 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   2 terms 
  Biological process     immune response   2 terms 


DOI no: 10.1016/S1074-7613(00)80537-3 Immunity 8:319-329 (1998)
PubMed id: 9529149  
Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues.
C.A.Scott, P.A.Peterson, L.Teyton, I.A.Wilson.
We have determined the structures of I-Ad covalently linked to an ovalbumin peptide (OVA323-339) and to an influenza virus hemagglutinin peptide (HA126-138). The floor of the peptide-binding groove contains an unusual beta bulge, not seen in I-E and DR structures, that affects numerous interactions between the alpha and beta chains and bound peptide. Unlike other MHC-peptide complexes, the peptides do not insert any large anchor residues into the binding pockets of the shallow I-Ad binding groove. The previously identified six-residue "core" binding motif of I-Ad occupies only the P4 to P9 pockets, implying that specificity of T cell receptor recognition of I-Ad-peptide complexes can be accomplished by peptides that only partially fill the MHC groove.
  Selected figure(s)  
Figure 4.
Figure 4. The Conserved H Bonds between I-A^d and the Peptide BackboneThe H bonds occurring between the main-chain O of the β bulge and the P4 N of the peptide are partially obscured by peptide. For clarity, only the α helices and fragments of the β structure are shown.
Figure 7.
Figure 7. Structurally Important Residues in I-A^d αβ Chain DimerizationA side view of I-A^d, showing some of the principal residues that play a role in determining the degree of mixed αβ chain pairing. Most of the residues identified are polymorphic within the I-A isotype. The α subunit is shown in magenta, and the β subunit is shown in blue. The β bulge is highlighted in green. The H2a helix of the β subunit has been omitted to reveal the close association of α66Glu with β8Val.
  The above figures are reprinted by permission from Cell Press: Immunity (1998, 8, 319-329) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22955843 J.F.Mohan, and E.R.Unanue (2012).
Unconventional recognition of peptides by T cells and the implications for autoimmunity.
  Nat Rev Immunol, 12, 721-728.  
20823902 D.Cížková, J.Gouy de Bellocq, S.J.Baird, J.Piálek, and J.Bryja (2011).
Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations.
  Heredity, 106, 727-740.  
20636002 P.R.Van Binh, and H.T.Duc (2010).
Approach towards optimal physiological T-cell-mediated immune response.
  Immunotherapy, 2, 477-479.  
21110065 T.J.Xu, Y.N.Sun, and S.L.Chen (2010).
Allelic variation, balancing selection and positive selected sites detected from MHC class Iα gene of olive flounder.
  Genetica, 138, 1251-1259.  
19923463 E.Landais, P.A.Romagnoli, A.L.Corper, J.Shires, J.D.Altman, I.A.Wilson, K.C.Garcia, and L.Teyton (2009).
New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.
  J Immunol, 183, 7949-7957.  
19042022 K.D.Jensen, E.E.Sercarz, and C.R.Gabaglia (2009).
Altered peptide ligands can modify the Th2 T cell response to the immunodominant 161-175 peptide of LACK (Leishmania homolog for the receptor of activated C kinase).
  Mol Immunol, 46, 366-374.  
19176319 K.R.Qazi, U.Gehrmann, E.Domange Jordö, M.C.Karlsson, and S.Gabrielsson (2009).
Antigen-loaded exosomes alone induce Th1-type memory through a B cell-dependent mechanism.
  Blood, 113, 2673-2683.  
19017300 S.Caillat-Zucman (2009).
Molecular mechanisms of HLA association with autoimmune diseases.
  Tissue Antigens, 73, 1-8.  
18082388 A.Suri, M.G.Levisetti, and E.R.Unanue (2008).
Do the peptide-binding properties of diabetogenic class II molecules explain autoreactivity?
  Curr Opin Immunol, 20, 105-110.  
18155234 C.McBeth, A.Seamons, J.C.Pizarro, S.J.Fleishman, D.Baker, T.Kortemme, J.M.Goverman, and R.K.Strong (2008).
A new twist in TCR diversity revealed by a forbidden alphabeta TCR.
  J Mol Biol, 375, 1306-1319.
PDB codes: 2p1y 2p24
18925947 C.S.Parry (2008).
Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets.
  BMC Struct Biol, 8, 44.  
  18713974 J.M.Weaver, C.A.Lazarski, K.A.Richards, F.A.Chaves, S.A.Jenks, P.R.Menges, and A.J.Sant (2008).
Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design.
  J Immunol, 181, 3039-3048.  
18685643 M.Amills, O.Ramírez, A.Tomàs, G.Obexer-Ruff, and O.Vidal (2008).
Positive selection on mammalian MHC-DQ genes revisited from a multispecies perspective.
  Genes Immun, 9, 651-658.  
18245836 R.J.Stoffels, and H.G.Spencer (2008).
An asymmetric model of heterozygote advantage at major histocompatibility complex genes: degenerate pathogen recognition and intersection advantage.
  Genetics, 178, 1473-1489.  
17320138 D.Homann, H.Lewicki, D.Brooks, J.Eberlein, V.Mallet-Designé, L.Teyton, and M.B.Oldstone (2007).
Mapping and restriction of a dominant viral CD4+ T cell core epitope by both MHC class I and MHC class II.
  Virology, 363, 113-123.  
17497145 G.P.Bondinas, A.K.Moustakas, and G.K.Papadopoulos (2007).
The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function.
  Immunogenetics, 59, 539-553.  
17629515 K.N.Henderson, J.A.Tye-Din, H.H.Reid, Z.Chen, N.A.Borg, T.Beissbarth, A.Tatham, S.I.Mannering, A.W.Purcell, N.L.Dudek, D.A.van Heel, J.McCluskey, J.Rossjohn, and R.P.Anderson (2007).
A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease.
  Immunity, 27, 23-34.
PDB code: 2nna
17211830 K.Y.Chang, A.Suri, and E.R.Unanue (2007).
Predicting peptides bound to I-Ag7 class II histocompatibility molecules using a novel expectation-maximization alignment algorithm.
  Proteomics, 7, 367-377.  
17233742 X.Liang, L.Ma, N.L.Thai, J.J.Fung, S.Qian, and L.Lu (2007).
The role of liver-derived regulatory dendritic cells in prevention of type 1 diabetes.
  Immunology, 120, 251-260.  
16682499 C.A.Lazarski, F.A.Chaves, and A.J.Sant (2006).
The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability.
  J Exp Med, 203, 1319-1328.  
16467985 J.Bryja, M.Galan, N.Charbonnel, and J.F.Cosson (2006).
Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae).
  Immunogenetics, 58, 191-202.  
16426456 J.C.Tong, J.Bramson, D.Kanduc, S.Chow, A.A.Sinha, and S.Ranganathan (2006).
Modeling the bound conformation of Pemphigus vulgaris-associated peptides to MHC Class II DR and DQ alleles.
  Immunome Res, 2, 1.  
20476978 N.Mehra, and G.Kaur (2006).
HLA genetics and disease with particular reference to Type 1 diabetes and HIV infection in Asian Indians.
  Expert Rev Clin Immunol, 2, 901-913.  
16423049 Y.Sakurai, B.Tang, E.F.Rosloniec, J.M.Stuart, A.H.Kang, and L.K.Myers (2006).
Molecular characterization of an arthritogenic collagen peptide interacting with I-Ar.
  Immunology, 117, 136-142.  
16982003 Y.Sakurai, D.D.Brand, B.Tang, E.F.Rosloniec, J.M.Stuart, A.H.Kang, and L.K.Myers (2006).
Analog peptides of type II collagen can suppress arthritis in HLA-DR4 (DRB1*0401) transgenic mice.
  Arthritis Res Ther, 8, R150.  
16181342 A.J.Sant, F.A.Chaves, S.A.Jenks, K.A.Richards, P.Menges, J.M.Weaver, and C.A.Lazarski (2005).
The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes.
  Immunol Rev, 207, 261-278.  
16039577 C.A.Lazarski, F.A.Chaves, S.A.Jenks, S.Wu, K.A.Richards, J.M.Weaver, and A.J.Sant (2005).
The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance.
  Immunity, 23, 29-40.  
15826953 E.Bergseng, J.Xia, C.Y.Kim, C.Khosla, and L.M.Sollid (2005).
Main chain hydrogen bond interactions in the binding of proline-rich gluten peptides to the celiac disease-associated HLA-DQ2 molecule.
  J Biol Chem, 280, 21791-21796.  
15980450 G.L.Zhang, K.N.Srinivasan, A.Veeramani, J.T.August, and V.Brusic (2005).
PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse.
  Nucleic Acids Res, 33, W180-W183.  
15906027 K.Oved, A.Lev, R.Noy, D.Segal, and Y.Reiter (2005).
Antibody-mediated targeting of human single-chain class I MHC with covalently linked peptides induces efficient killing of tumor cells by tumor or viral-specific cytotoxic T lymphocytes.
  Cancer Immunol Immunother, 54, 867-879.  
16000083 N.A.Williamson, and A.W.Purcell (2005).
Use of proteomics to define targets of T-cell immunity.
  Expert Rev Proteomics, 2, 367-380.  
16181330 T.H.Hansen, L.Lybarger, L.Yu, V.Mitaksov, and D.H.Fremont (2005).
Recognition of open conformers of classical MHC by chaperones and monoclonal antibodies.
  Immunol Rev, 207, 100-111.  
15291817 A.G.Tzakos, P.Fuchs, N.A.van Nuland, A.Troganis, T.Tselios, S.Deraos, J.Matsoukas, I.P.Gerothanassis, and A.M.Bonvin (2004).
NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist: structural implications for the MHC II (I-Au)-peptide complex from docking calculations.
  Eur J Biochem, 271, 3399-3413.  
15213134 K.M.Williams, and E.C.Bigley (2004).
Identification of an I-Ed-restricted T-cell epitope of Escherichia coli outer membrane protein F.
  Infect Immun, 72, 3907-3913.  
15084275 Z.Pu, S.B.Lovitch, E.K.Bikoff, and E.R.Unanue (2004).
T cells distinguish MHC-peptide complexes formed in separate vesicles and edited by H2-DM.
  Immunity, 20, 467-476.  
12682304 A.Suri, J.J.Walters, O.Kanagawa, M.L.Gross, and E.R.Unanue (2003).
Specificity of peptide selection by antigen-presenting cells homozygous or heterozygous for expression of class II MHC molecules: The lack of competition.
  Proc Natl Acad Sci U S A, 100, 5330-5335.  
12803494 A.W.Purcell, W.Zeng, N.A.Mifsud, L.K.Ely, W.A.Macdonald, and D.C.Jackson (2003).
Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design.
  J Pept Sci, 9, 255-281.  
14617029 F.Berretta, R.H.Butler, G.Diaz, N.Sanarico, J.Arroyo, M.Fraziano, G.Aichinger, K.W.Wucherpfennig, V.Colizzi, C.Saltini, and M.Amicosante (2003).
Detailed analysis of the effects of Glu/Lys beta69 human leukocyte antigen-DP polymorphism on peptide-binding specificity.
  Tissue Antigens, 62, 459-471.  
12116175 A.K.Moustakas, and G.K.Papadopoulos (2002).
Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: keys to the fate of islet beta-cells.
  Am J Med Genet, 115, 37-47.  
11857638 B.J.McFarland, and C.Beeson (2002).
Binding interactions between peptides and proteins of the class II major histocompatibility complex.
  Med Res Rev, 22, 168-203.  
11956295 D.H.Fremont, S.Dai, H.Chiang, F.Crawford, P.Marrack, and J.Kappler (2002).
Structural basis of cytochrome c presentation by IE(k).
  J Exp Med, 195, 1043-1052.
PDB codes: 1kt2 1ktd
12190925 E.R.Unanue (2002).
Perspective on antigen processing and presentation.
  Immunol Rev, 185, 86.  
12010576 P.E.Adrian, G.Rajaseger, V.S.Mathura, M.K.Sakharkar, and P.Kangueane (2002).
Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data.
  BMC Struct Biol, 2, 2.  
12402950 T.D.Lockey, S.Surman, S.Brown, K.S.Slobod, C.Coleclough, P.C.Doherty, and J.L.Hurwitz (2002).
A five-residue HIV envelope helper T cell determinant: does this peptide-MHC interaction leave the binding groove half empty?
  AIDS Res Hum Retroviruses, 18, 1141-1144.  
12406392 V.Nagabhushanam, A.W.Purcell, S.Mannering, S.Germano, J.Praszkier, and C.Cheers (2002).
Identification of an I-Ad restricted peptide on the 65-kilodalton heat shock protein of Mycobacterium avium.
  Immunol Cell Biol, 80, 574-583.  
12150894 X.L.He, C.Radu, J.Sidney, A.Sette, E.S.Ward, and K.C.Garcia (2002).
Structural snapshot of aberrant antigen presentation linked to autoimmunity: the immunodominant epitope of MBP complexed with I-Au.
  Immunity, 17, 83-94.
PDB code: 1k2d
12084926 X.Liu, S.Dai, F.Crawford, R.Fruge, P.Marrack, and J.Kappler (2002).
Alternate interactions define the binding of peptides to the MHC molecule IA(b).
  Proc Natl Acad Sci U S A, 99, 8820-8825.
PDB code: 1lnu
12084929 Z.Pu, J.A.Carrero, and E.R.Unanue (2002).
Distinct recognition by two subsets of T cells of an MHC class II-peptide complex.
  Proc Natl Acad Sci U S A, 99, 8844-8849.  
11470892 B.J.McFarland, J.F.Katz, C.Beeson, and A.J.Sant (2001).
Energetic asymmetry among hydrogen bonds in MHC class II*peptide complexes.
  Proc Natl Acad Sci U S A, 98, 9231-9236.  
  11905843 D.D.Brand, K.B.Whittington, and E.F.Rosloniec (2001).
I-Aq and I-Ap bind and present similar antigenic peptides despite differing in their ability to mediate susceptibility to autoimmune arthritis.
  Autoimmunity, 34, 133-145.  
11180120 M.Kalbus, B.T.Fleckenstein, M.Offenhäusser, M.Blüggel, A.Melms, H.E.Meyer, H.G.Rammensee, R.Martin, G.Jung, and N.Sommer (2001).
Ligand motif of the autoimmune disease-associated mouse MHC class II molecule H2-A(s).
  Eur J Immunol, 31, 551-562.  
11536359 O.Schueler-Furman, Y.Altuvia, and H.Margalit (2001).
Examination of possible structural constraints of MHC-binding peptides by assessment of their native structure within their source proteins.
  Proteins, 45, 47-54.  
11461047 S.Henriot, J.P.Lepoitrevin, and E.Trifilieff (2001).
Haptenization of ovalbumin with the skin sensitizer methyl octanesulfonate: characterization of the methylated OVA323-339 T-cell epitope at His331.
  J Pept Sci, 7, 331-337.  
10636922 A.K.Sato, J.A.Zarutskie, M.M.Rushe, A.Lomakin, S.K.Natarajan, S.Sadegh-Nasseri, G.B.Benedek, and L.J.Stern (2000).
Determinants of the peptide-induced conformational change in the human class II major histocompatibility complex protein HLA-DR1.
  J Biol Chem, 275, 2165-2173.  
10775108 A.L.Corper, T.Stratmann, V.Apostolopoulos, C.A.Scott, K.C.Garcia, A.S.Kang, I.A.Wilson, and L.Teyton (2000).
A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes.
  Science, 288, 505-511.
PDB code: 1es0
11053110 A.Simon, Z.Dosztányi, E.Rajnavölgyi, and I.Simon (2000).
Function-related regulation of the stability of MHC proteins.
  Biophys J, 79, 2305-2313.  
10894169 R.R.Latek, A.Suri, S.J.Petzold, C.A.Nelson, O.Kanagawa, E.R.Unanue, and D.H.Fremont (2000).
Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice.
  Immunity, 12, 699-710.
PDB code: 1f3j
11016975 R.R.Latek, S.J.Petzold, and E.R.Unanue (2000).
Hindering auxiliary anchors are potent modulators of peptide binding and selection by I-Ak class II molecules.
  Proc Natl Acad Sci U S A, 97, 11460-11465.  
10736175 R.V.Joshi, J.A.Zarutskie, and L.J.Stern (2000).
A three-step kinetic mechanism for peptide binding to MHC class II proteins.
  Biochemistry, 39, 3751-3762.  
10631950 A.J.Sant, C.Beeson, B.McFarland, J.Cao, S.Ceman, P.W.Bryant, and S.Wu (1999).
Individual hydrogen bonds play a critical role in MHC class II: peptide interactions: implications for the dynamic aspects of class II trafficking and DM-mediated peptide exchange.
  Immunol Rev, 172, 239-253.  
  10456868 A.Kariyone, K.Higuchi, S.Yamamoto, A.Nagasaka-Kametaka, M.Harada, A.Takahashi, N.Harada, K.Ogasawara, and K.Takatsu (1999).
Identification of amino acid residues of the T-cell epitope of Mycobacterium tuberculosis alpha antigen critical for Vbeta11(+) Th1 cells.
  Infect Immun, 67, 4312-4319.  
10600129 B.J.McFarland, A.J.Sant, T.P.Lybrand, and C.Beeson (1999).
Ovalbumin(323-339) peptide binds to the major histocompatibility complex class II I-A(d) protein using two functionally distinct registers.
  Biochemistry, 38, 16663-16670.  
9874795 C.I.Pearson, A.M.Gautam, I.C.Rulifson, R.S.Liblau, and H.O.McDevitt (1999).
A small number of residues in the class II molecule I-Au confer the ability to bind the myelin basic protein peptide Ac1-11.
  Proc Natl Acad Sci U S A, 96, 197-202.  
10359576 D.H.Hausmann, B.Yu, S.Hausmann, and K.W.Wucherpfennig (1999).
pH-dependent peptide binding properties of the type I diabetes-associated I-Ag7 molecule: rapid release of CLIP at an endosomal pH.
  J Exp Med, 189, 1723-1734.  
10411925 E.Carrasco-Marin, O.Kanagawa, and E.R.Unanue (1999).
The lack of consensus for I-A(g7)-peptide binding motifs: is there a requirement for anchor amino acid side chains?
  Proc Natl Acad Sci U S A, 96, 8621-8626.  
10583947 E.L.Reinherz, K.Tan, L.Tang, P.Kern, J.Liu, Y.Xiong, R.E.Hussey, A.Smolyar, B.Hare, R.Zhang, A.Joachimiak, H.C.Chang, G.Wagner, and J.Wang (1999).
The crystal structure of a T cell receptor in complex with peptide and MHC class II.
  Science, 286, 1913-1921.
PDB code: 1d9k
10231540 J.A.Zarutskie, A.K.Sato, M.M.Rushe, I.C.Chan, A.Lomakin, G.B.Benedek, and L.J.Stern (1999).
A conformational change in the human major histocompatibility complex protein HLA-DR1 induced by peptide binding.
  Biochemistry, 38, 5878-5887.  
9927513 J.Thatte, A.Qadri, C.Radu, and E.S.Ward (1999).
Molecular requirements for T cell recognition by a major histocompatibility complex class II-restricted T cell receptor: the involvement of the fourth hypervariable loop of the Valpha domain.
  J Exp Med, 189, 509-520.  
9933100 K.Bartnes, F.Leon, J.P.Briand, P.J.Travers, and K.Hannestad (1999).
N-terminal elongation of a peptide determinant beyond the first primary anchor improves binding to H-2 I-Ad and HLA-DR1 by backbone-dependent and aromatic side chain-dependent interactions, respectively.
  Eur J Immunol, 29, 189-195.  
10358763 K.C.Garcia, L.Teyton, and I.A.Wilson (1999).
Structural basis of T cell recognition.
  Annu Rev Immunol, 17, 369-397.  
10607669 K.Maenaka, and E.Y.Jones (1999).
MHC superfamily structure and the immune system.
  Curr Opin Struct Biol, 9, 745-753.  
10611336 L.Santambrogio, A.K.Sato, F.R.Fischer, M.E.Dorf, and L.J.Stern (1999).
Abundant empty class II MHC molecules on the surface of immature dendritic cells.
  Proc Natl Acad Sci U S A, 96, 15050-15055.  
10508247 P.W.Bryant, P.Roos, H.L.Ploegh, and A.J.Sant (1999).
Deviant trafficking of I-Ad mutant molecules is reflected in their peptide binding properties.
  Eur J Immunol, 29, 2729-2739.  
10631948 R.R.Latek, and E.R.Unanue (1999).
Mechanisms and consequences of peptide selection by the I-Ak class II molecule.
  Immunol Rev, 172, 209-228.  
10545347 T.G.Anderson, and H.M.McConnell (1999).
Interpretation of biphasic dissociation kinetics for isomeric class II major histocompatibility complex-peptide complexes
  Biophys J, 77, 2451-2461.  
9842927 I.Khalil-Daher, F.Boisgérault, J.P.Feugeas, V.Tieng, A.Toubert, and D.Charron (1998).
Naturally processed peptides from HLA-DQ7 (alpha1*0501-beta1*0301): influence of both alpha and beta chain polymorphism in the HLA-DQ peptide binding specificity.
  Eur J Immunol, 28, 3840-3849.  
9806632 J.J.Boniface, J.D.Rabinowitz, C.Wülfing, J.Hampl, Z.Reich, J.D.Altman, R.M.Kantor, C.Beeson, H.M.McConnell, and M.M.Davis (1998).
Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]
  Immunity, 9, 459-466.  
9782128 K.J.Smith, J.Pyrdol, L.Gauthier, D.C.Wiley, and K.W.Wucherpfennig (1998).
Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein.
  J Exp Med, 188, 1511-1520.
PDB code: 1bx2
9751750 L.Gauthier, K.J.Smith, J.Pyrdol, A.Kalandadze, J.L.Strominger, D.C.Wiley, and K.W.Wucherpfennig (1998).
Expression and crystallization of the complex of HLA-DR2 (DRA, DRB1*1501) and an immunodominant peptide of human myelin basic protein.
  Proc Natl Acad Sci U S A, 95, 11828-11833.  
9841927 S.Ceman, S.Wu, T.S.Jardetzky, and A.J.Sant (1998).
Alteration of a single hydrogen bond between class II molecules and peptide results in rapid degradation of class II molecules after invariant chain removal.
  J Exp Med, 188, 2139-2149.  
9862341 T.Gyotoku, Y.Fukui, and T.Sasazuki (1998).
An endogenously processed self peptide and the corresponding exogenous peptide bound to the same MHC class II molecule could be distinct ligands for TCR with different kinetic stability.
  Eur J Immunol, 28, 4050-4061.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.