PDBsum entry 2h8k

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
Protein chain
245 a.a. *
A3P ×2
* Residue conservation analysis
PDB id:
Name: Transferase
Title: Human sulfotranferase sult1c3 in complex with pap
Structure: Sult1c3 splice variant d. Chain: a, b. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: sult1c3. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
3.20Å     R-factor:   0.292     R-free:   0.342
Authors: W.Tempel,L.Dombrovski,P.Loppnau,J.Weigelt,M.Sundstrom, C.H.Arrowsmith,A.M.Edwards,A.Bochkarev,A.N.Plotnikov, Structural Genomics Consortium (Sgc)
Key ref: A.Allali-Hassani et al. (2007). Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol, 5, e97. PubMed id: 17425406
07-Jun-06     Release date:   20-Jun-06    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
Q6IMI6  (ST1C3_HUMAN) -  Sulfotransferase 1C3
304 a.a.
245 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Alcohol sulfotransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 3'-phosphoadenylyl sulfate + an alcohol = adenosine 3',5'-bisphosphate + an alkyl sulfate
3'-phosphoadenylyl sulfate
+ alcohol
adenosine 3',5'-bisphosphate
Bound ligand (Het Group name = A3P)
corresponds exactly
+ alkyl sulfate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     sulfur compound metabolic process   1 term 
  Biochemical function     transferase activity     4 terms  


PLoS Biol 5:e97 (2007)
PubMed id: 17425406  
Structural and chemical profiling of the human cytosolic sulfotransferases.
A.Allali-Hassani, P.W.Pan, L.Dombrovski, R.Najmanovich, W.Tempel, A.Dong, P.Loppnau, F.Martin, J.Thornton, J.Thonton, A.M.Edwards, A.Bochkarev, A.N.Plotnikov, M.Vedadi, C.H.Arrowsmith.
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique "chemical fingerprints" for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural "priming" of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone.

Literature references that cite this PDB file's key reference

  PubMed id Reference
22481358 F.C.Jones, M.G.Grabherr, Y.F.Chan, P.Russell, E.Mauceli, J.Johnson, R.Swofford, M.Pirun, M.C.Zody, S.White, E.Birney, S.Searle, J.Schmutz, J.Grimwood, M.C.Dickson, R.M.Myers, C.T.Miller, B.R.Summers, A.K.Knecht, S.D.Brady, H.Zhang, A.A.Pollen, T.Howes, C.Amemiya, J.Baldwin, T.Bloom, D.B.Jaffe, R.Nicol, J.Wilkinson, E.S.Lander, F.Di Palma, K.Lindblad-Toh, and D.M.Kingsley (2012).
The genomic basis of adaptive evolution in threespine sticklebacks.
  Nature, 484, 55-61.  
21521020 T.L.Ramsey, H.Y.Meltzer, G.N.Brock, B.Mehrotra, K.Jayathilake, W.V.Bobo, and M.D.Brennan (2011).
Evidence for a SULT4A1 haplotype correlating with baseline psychopathology and atypical antipsychotic response.
  Pharmacogenomics, 12, 471-480.  
20361791 M.J.Bick, J.J.Banik, S.A.Darst, and S.F.Brady (2010).
Crystal structures of the glycopeptide sulfotransferase Teg12 in a complex with the teicoplanin aglycone.
  Biochemistry, 49, 4159-4168.
PDB codes: 3mg9 3mgb 3mgc
19702579 A.Allali-Hassani, G.A.Wasney, I.Chau, B.S.Hong, G.Senisterra, P.Loppnau, Z.Shi, J.Moult, A.M.Edwards, C.H.Arrowsmith, H.W.Park, M.Schapira, and M.Vedadi (2009).
A survey of proteins encoded by non-synonymous single nucleotide polymorphisms reveals a significant fraction with altered stability and activity.
  Biochem J, 424, 15-26.  
19489729 A.Edwards (2009).
Large-scale structural biology of the human proteome.
  Annu Rev Biochem, 78, 541-568.  
19398323 B.H.Dessailly, O.C.Redfern, A.Cuff, and C.A.Orengo (2009).
Exploiting structural classifications for function prediction: towards a domain grammar for protein function.
  Curr Opin Struct Biol, 19, 349-356.  
19523904 B.H.Dessailly, R.Nair, L.Jaroszewski, J.E.Fajardo, A.Kouranov, D.Lee, A.Fiser, A.Godzik, B.Rost, and C.Orengo (2009).
PSI-2: structural genomics to cover protein domain family space.
  Structure, 17, 869-881.  
19225610 G.A.Senisterra, and P.J.Finerty (2009).
High throughput methods of assessing protein stability and aggregation.
  Mol Biosyst, 5, 217-223.  
19589875 I.T.Cook, Z.Duniec-Dmuchowski, T.A.Kocarek, M.Runge-Morris, and C.N.Falany (2009).
24-hydroxycholesterol sulfation by human cytosolic sulfotransferases: formation of monosulfates and disulfates, molecular modeling, sulfatase sensitivity, and inhibition of liver x receptor activation.
  Drug Metab Dispos, 37, 2069-2078.  
19337310 W.L.Shih, M.W.Yu, P.J.Chen, T.W.Wu, C.L.Lin, C.J.Liu, S.M.Lin, D.I.Tai, S.D.Lee, and Y.F.Liaw (2009).
Evidence for association with hepatocellular carcinoma at the PAPSS1 locus on chromosome 4q25 in a family-based study.
  Eur J Hum Genet, 17, 1250-1259.  
19131563 Y.Alnouti (2009).
Bile Acid sulfation: a pathway of bile acid elimination and detoxification.
  Toxicol Sci, 108, 225-246.  
18250626 A.Edwards (2008).
Bermuda Principles meet structural biology.
  Nat Struct Mol Biol, 15, 116.  
19356094 E.B.Yalcin, S.M.Struzik, and R.S.King (2008).
Allosteric modulation of SULT2A1 by celecoxib and nimesulide: computational analyses.
  Drug Metab Lett, 2, 198-204.  
19008949 J.W.Bruce, P.Ahlquist, and J.A.Young (2008).
The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.
  PLoS Pathog, 4, e1000207.  
18282486 J.Weigelt, L.D.McBroom-Cerajewski, M.Schapira, Y.Zhao, C.H.Arrowsmith, and C.H.Arrowmsmith (2008).
Structural genomics and drug discovery: all in the family.
  Curr Opin Chem Biol, 12, 32-39.  
18689810 R.Najmanovich, N.Kurbatova, and J.Thornton (2008).
Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
  Bioinformatics, 24, i105-i111.  
18073098 R.C.Stevens (2007).
Generation of protein structures for the 21(st) century.
  Structure, 15, 1517-1519.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.