spacer
spacer

PDBsum entry 2g2s

Go to PDB code: 
protein metals Protein-protein interface(s) links
Luminescent protein PDB id
2g2s

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
64 a.a. *
165 a.a. *
Metals
_MG
Waters ×325
* Residue conservation analysis
PDB id:
2g2s
Name: Luminescent protein
Title: Structure of s65g y66s gfp variant after spontaneous peptide hydrolysis
Structure: Green fluorescent protein. Chain: a. Engineered: yes. Mutation: yes. Green fluorescent protein. Chain: b. Engineered: yes. Mutation: yes
Source: Aequorea victoria. Organism_taxid: 6100. Gene: gfp. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
1.20Å     R-factor:   0.123     R-free:   0.174
Authors: D.P.Barondeau
Key ref: D.P.Barondeau et al. (2006). Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. J Am Chem Soc, 128, 4685-4693. PubMed id: 16594705 DOI: 10.1021/ja056635l
Date:
16-Feb-06     Release date:   18-Apr-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P42212  (GFP_AEQVI) -  Green fluorescent protein from Aequorea victoria
Seq:
Struc:
238 a.a.
64 a.a.*
Protein chain
Pfam   ArchSchema ?
P42212  (GFP_AEQVI) -  Green fluorescent protein from Aequorea victoria
Seq:
Struc:
238 a.a.
165 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 

 
DOI no: 10.1021/ja056635l J Am Chem Soc 128:4685-4693 (2006)
PubMed id: 16594705  
 
 
Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation.
D.P.Barondeau, C.J.Kassmann, J.A.Tainer, E.D.Getzoff.
 
  ABSTRACT  
 
The green fluorescent protein (GFP) creates a fluorophore out of three sequential amino acids by promoting spontaneous posttranslational modifications. Here, we use high-resolution crystallography to characterize GFP variants that not only undergo peptide backbone cyclization but additional denaturation-induced peptide backbone fragmentation, native peptide hydrolysis, and decarboxylation reactions. Our analyses indicate that architectural features that favor GFP peptide cyclization also drive peptide hydrolysis. These results are relevant for the maturation pathways of GFP homologues, such as the kindling fluorescent protein and the Kaede protein, which use backbone cleavage to red-shift the spectral properties of their chromophores. We further propose a photochemical mechanism for the decarboxylation reaction, supporting a role for the GFP protein environment in facilitating radical formation and one-electron chemistry, which may be important in activating oxygen for the oxidation step of chromophore biosynthesis. Together, our results characterize GFP posttranslational modification chemistry with implications for the energetic landscape of backbone cyclization and subsequent reactions, and for the rational design of predetermined spontaneous backbone cyclization and cleavage reactions.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
23396808 S.Classen, G.L.Hura, J.M.Holton, R.P.Rambo, I.Rodic, P.J.McGuire, K.Dyer, M.Hammel, G.Meigs, K.A.Frankel, and J.A.Tainer (2013).
Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.
  J Appl Crystallogr, 46, 1.  
21416150 B.P.Dolan, J.R.Bennink, and J.W.Yewdell (2011).
Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands.
  Cell Mol Life Sci, 68, 1481-1489.  
21476986 J.W.Yewdell, J.R.Lacsina, M.C.Rechsteiner, and C.V.Nicchitta (2011).
Out with the old, in with the new? Comparing methods for measuring protein degradation.
  Cell Biol Int, 35, 457-462.  
20220148 N.V.Pletneva, V.Z.Pletnev, K.A.Lukyanov, N.G.Gurskaya, E.A.Goryacheva, V.I.Martynov, A.Wlodawer, Z.Dauter, and S.Pletnev (2010).
Structural evidence for a dehydrated intermediate in green fluorescent protein chromophore biosynthesis.
  J Biol Chem, 285, 15978-15984.
PDB codes: 3lva 3lvc 3lvd
20121102 S.Pletnev, F.V.Subach, Z.Dauter, A.Wlodawer, and V.V.Verkhusha (2010).
Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores.
  J Am Chem Soc, 132, 2243-2253.
PDB codes: 3lf3 3lf4
19364318 A.A.Pakhomov, and V.I.Martynov (2009).
Posttranslational chemistry of proteins of the GFP family.
  Biochemistry (Mosc), 74, 250-259.  
18854990 C.Blum, and V.Subramaniam (2009).
Single-molecule spectroscopy of fluorescent proteins.
  Anal Bioanal Chem, 393, 527-541.  
19737938 S.Pletnev, N.G.Gurskaya, N.V.Pletneva, K.A.Lukyanov, D.M.Chudakov, V.I.Martynov, V.O.Popov, M.V.Kovalchuk, A.Wlodawer, Z.Dauter, and V.Pletnev (2009).
Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed.
  J Biol Chem, 284, 32028-32039.
PDB codes: 3gb3 3gl4
19771336 S.R.Meech (2009).
Excited state reactions in fluorescent proteins.
  Chem Soc Rev, 38, 2922-2934.  
19771333 T.D.Craggs (2009).
Green fluorescent protein: structure, folding and chromophore maturation.
  Chem Soc Rev, 38, 2865-2875.  
18759496 L.J.Pouwels, L.Zhang, N.H.Chan, P.C.Dorrestein, and R.M.Wachter (2008).
Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants.
  Biochemistry, 47, 10111-10122.  
18283485 M.R.Moussavian, J.E.Slotta, O.Kollmar, M.D.Menger, G.Gronow, and M.K.Schilling (2008).
Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators.
  Langenbecks Arch Surg, 393, 303-310.  
17881826 N.Pletneva, V.Pletnev, T.Tikhonova, A.A.Pakhomov, V.Popov, V.I.Martynov, A.Wlodawer, Z.Dauter, and S.Pletnev (2007).
Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
  Acta Crystallogr D Biol Crystallogr, 63, 1082-1093.
PDB codes: 2icr 2ojk 2pxs 2pxw
17886433 N.V.Pletneva, S.V.Pletnev, D.M.Chudakov, T.V.Tikhonova, V.O.Popov, V.I.Martynov, A.Wlodawer, Z.Dauter, and V.Z.Pletnev (2007).
[Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom]
  Bioorg Khim, 33, 421-430.
PDB code: 2ogr
17064887 S.J.Remington (2006).
Fluorescent proteins: maturation, photochemistry and photophysics.
  Curr Opin Struct Biol, 16, 714-721.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer