spacer
spacer

PDBsum entry 2fug

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
2fug
Jmol
Contents
Protein chains
432 a.a. *
178 a.a. *
737 a.a. *
370 a.a. *
191 a.a. *
144 a.a. *
154 a.a. *
127 a.a. *
Ligands
SF4 ×28
FES ×8
FMN ×4
* Residue conservation analysis
PDB id:
2fug
Name: Oxidoreductase
Title: Crystal structure of the hydrophilic domain of respiratory c from thermus thermophilus
Structure: Nadh-quinone oxidoreductase chain 1. Chain: 1, a, j, s. Fragment: hydrophilic domain. Synonym: nadh dehydrogenase i, chain 1, ndh-1, chain 1. Nadh-quinone oxidoreductase chain 2. Chain: 2, b, k, t. Synonym: nadh dehydrogenase i, chain 2, ndh-1, chain 2. Nadh-quinone oxidoreductase chain 3. Chain: 3, c, l, u.
Source: Thermus thermophilus. Organism_taxid: 300852. Strain: hb8. Strain: hb8
Biol. unit: Octamer (from PQS)
Resolution:
3.30Å     R-factor:   0.265     R-free:   0.298
Authors: L.A.Sazanov,P.Hinchliffe
Key ref:
L.A.Sazanov and P.Hinchliffe (2006). Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science, 311, 1430-1436. PubMed id: 16469879 DOI: 10.1126/science.1123809
Date:
26-Jan-06     Release date:   14-Feb-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q56222  (NQO1_THET8) -  NADH-quinone oxidoreductase subunit 1
Seq:
Struc:
438 a.a.
432 a.a.
Protein chains
Pfam   ArchSchema ?
Q56221  (NQO2_THET8) -  NADH-quinone oxidoreductase subunit 2
Seq:
Struc:
181 a.a.
178 a.a.
Protein chains
Pfam   ArchSchema ?
Q56223  (NQO3_THET8) -  NADH-quinone oxidoreductase subunit 3
Seq:
Struc:
 
Seq:
Struc:
783 a.a.
737 a.a.
Protein chains
Pfam   ArchSchema ?
Q56220  (NQO4_THET8) -  NADH-quinone oxidoreductase subunit 4
Seq:
Struc:
409 a.a.
370 a.a.
Protein chains
Pfam   ArchSchema ?
Q56219  (NQO5_THET8) -  NADH-quinone oxidoreductase subunit 5
Seq:
Struc:
207 a.a.
191 a.a.
Protein chains
Pfam   ArchSchema ?
Q56218  (NQO6_THET8) -  NADH-quinone oxidoreductase subunit 6
Seq:
Struc:
181 a.a.
144 a.a.
Protein chains
Pfam   ArchSchema ?
Q56224  (NQO9_THET8) -  NADH-quinone oxidoreductase subunit 9
Seq:
Struc:
182 a.a.
154 a.a.
Protein chains
Pfam   ArchSchema ?
Q5SKZ7  (NQO15_THET8) -  NADH-quinone oxidoreductase subunit 15
Seq:
Struc:
129 a.a.
127 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains 1, 2, 3, 4, 5, 6, 9, 7, A, B, C, D, E, F, G, H, J, K, L, M, N, O, P, Q, S, T, U, V, W, X, Y, Z: E.C.1.6.99.5  - Nadh dehydrogenase (quinone).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: NADH + acceptor = NAD+ + reduced acceptor
NADH
Bound ligand (Het Group name = FMN)
matches with 41.51% similarity
+ acceptor
= NAD(+)
+ reduced acceptor
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   2 terms 
  Biological process     oxidation-reduction process   4 terms 
  Biochemical function     electron carrier activity     15 terms  

 

 
    Added reference    
 
 
DOI no: 10.1126/science.1123809 Science 311:1430-1436 (2006)
PubMed id: 16469879  
 
 
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus.
L.A.Sazanov, P.Hinchliffe.
 
  ABSTRACT  
 
Respiratory complex I plays a central role in cellular energy production in bacteria and mitochondria. Its dysfunction is implicated in many human neurodegenerative diseases, as well as in aging. The crystal structure of the hydrophilic domain (peripheral arm) of complex I from Thermus thermophilus has been solved at 3.3 angstrom resolution. This subcomplex consists of eight subunits and contains all the redox centers of the enzyme, including nine iron-sulfur clusters. The primary electron acceptor, flavin-mononucleotide, is within electron transfer distance of cluster N3, leading to the main redox pathway, and of the distal cluster N1a, a possible antioxidant. The structure reveals new aspects of the mechanism and evolution of the enzyme. The terminal cluster N2 is coordinated, uniquely, by two consecutive cysteines. The novel subunit Nqo15 has a similar fold to the mitochondrial iron chaperone frataxin, and it may be involved in iron-sulfur cluster regeneration in the complex.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Architecture of the hydrophilic domain of T. thermophilus complex I. (A) Side view, with the membrane arm likely to be beneath and extending to the right, in the direction of helix H1. Each subunit is colored differently; FMN is shown as magenta spheres, metal sites as red spheres for Fe atoms and yellow spheres for S atoms. A possible quinone-binding site (Q) is indicated by an arrow. (B) Arrangement of redox centers. The overall orientation is similar to that in (A), tilted to provide an improved view of the FMN and the clusters. Cluster N1a is in subunit Nqo2; N3 and FMN in Nqo1; N1b, N4, N5, and N7 in Nqo3; N6a/b in Nqo9; and N2 in Nqo6. The main pathway of electron transfer is indicated by blue arrows, and a diversion to cluster N1a by a green arrow. The distances between the centers given in angstroms were calculated both center-to-center and edge-to-edge (shown in parentheses). Clusters N3 and N4 are separated by 17.6 Å (13.8 Å edge-to-edge), and clusters N1b and N5 by 19.2 Å (16.7 Å edge-to-edge).
Figure 2.
Fig. 2. The folds of individual subunits. Fe-S centers are shown as red spheres for Fe atoms and yellow spheres for S atoms, with cluster names in red. Subunits are not drawn to the same scale. (A) Nqo1. Its N-terminal domain is in purple, a Rossman-fold domain in blue, an ubiquitin-like domain in green, and the C-terminal helical bundle, coordinating cluster N3, in red. FMN is shown in stick representation. (B) Nqo2. The N-terminal helical bundle is shown in blue, the thioredoxin-like domain coordinating cluster N1a in green. (C) Nqo3. The N-terminal [FeFe]-hydrogenase-like domain coordinating clusters N1b, N4, and N5 is magenta, subdomains of the C-terminal molybdoenzyme-like domain are shown in I (coordinating cluster N7), blue; II, green; III, yellow; and IV, red. (D) Nqo9, coordinating clusters N6a and N6b, is shown in rainbow representation, colored blue to red from N to C terminus. (E) Nqo6, coordinating cluster N2, is shown in rainbow representation, with helix H1 indicated. (F) Nqo4. The N-terminal ß domain is shown in blue, the -helical bundle in green, the extended helix H2 in yellow, and the C-terminal ß domain in orange. Clusters are shown for orientation only. (G) Nqo5. The N-terminal /ß domain interacting with Nqo4 is shown in blue, the domain interacting with Nqo9 in green, and the C-terminal loop interacting with Nqo3 in yellow. Clusters are shown for orientation only. (H) Nqo15, shown in rainbow representation. The histidines exposed inside the putative iron storage cavity are shown.
 
  The above figures are reprinted by permission from the AAAs: Science (2006, 311, 1430-1436) copyright 2006.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23417064 R.Baradaran, J.M.Berrisford, G.S.Minhas, and L.A.Sazanov (2013).
Crystal structure of the entire respiratory complex I.
  Nature, 494, 443-448.
PDB codes: 4he8 4hea
21205901 C.Auriol, G.Bestel-Corre, J.B.Claude, P.Soucaille, and I.Meynial-Salles (2011).
Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity.
  Proc Natl Acad Sci U S A, 108, 1278-1283.  
21265782 C.Bricio, L.Alvarez, M.J.Gómez, and J.Berenguer (2011).
Partial and complete denitrification in Thermus thermophilus: lessons from genome drafts.
  Biochem Soc Trans, 39, 249-253.  
21203893 M.Ferreira, A.Torraco, T.Rizza, F.Fattori, M.C.Meschini, C.Castana, N.E.Go, F.E.Nargang, M.Duarte, F.Piemonte, C.Dionisi-Vici, A.Videira, L.Vilarinho, F.M.Santorelli, R.Carrozzo, and E.Bertini (2011).
Progressive cavitating leukoencephalopathy associated with respiratory chain complex I deficiency and a novel mutation in NDUFS1.
  Neurogenetics, 12, 9.  
21822288 R.G.Efremov, and L.A.Sazanov (2011).
Structure of the membrane domain of respiratory complex I.
  Nature, 476, 414-420.
PDB code: 3rko
21226204 R.Hielscher, T.Friedrich, and P.Hellwig (2011).
Far- and mid-infrared spectroscopic analysis of the substrate-induced structural dynamics of respiratory complex I.
  Chemphyschem, 12, 217-224.  
21420404 S.B.Vik (2011).
The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis.
  FEBS Lett, 585, 1180-1184.  
21390036 T.Goris, A.F.Wait, M.Saggu, J.Fritsch, N.Heidary, M.Stein, I.Zebger, F.Lendzian, F.A.Armstrong, B.Friedrich, and O.Lenz (2011).
A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase.
  Nat Chem Biol, 7, 310-318.  
19968628 A.J.Lambert, J.A.Buckingham, H.M.Boysen, and M.D.Brand (2010).
Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia.
  Aging Cell, 9, 78-91.  
20581186 A.V.Mardanov, V.A.Svetlitchnyi, A.V.Beletsky, M.I.Prokofeva, E.A.Bonch-Osmolovskaya, N.V.Ravin, and K.G.Skryabin (2010).
The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs.
  Appl Environ Microbiol, 76, 5652-5657.  
21120593 B.Amarneh, and S.B.Vik (2010).
Transmembrane topology of subunit N of complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli.
  J Bioenerg Biomembr, 42, 511-516.  
20595580 C.Hunte, V.Zickermann, and U.Brandt (2010).
Functional modules and structural basis of conformational coupling in mitochondrial complex I.
  Science, 329, 448-451.  
20838423 C.O.Ciccolella, N.A.Raynard, J.H.Mei, D.C.Church, and R.A.Ludwig (2010).
Symbiotic legume nodules employ both rhizobial exo- and endo-hydrogenases to recycle hydrogen produced by nitrogen fixation.
  PLoS One, 5, e12094.  
20074573 E.Nakamaru-Ogiso, H.Han, A.Matsuno-Yagi, E.Keinan, S.C.Sinha, T.Yagi, and T.Ohnishi (2010).
The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor.
  FEBS Lett, 584, 883-888.  
20610779 H.R.Bridges, I.M.Fearnley, and J.Hirst (2010).
The subunit composition of mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Pichia pastoris.
  Mol Cell Proteomics, 9, 2318-2326.  
19940158 J.Chen, C.L.Chen, S.Rawale, C.A.Chen, J.L.Zweier, P.T.Kaumaya, and Y.R.Chen (2010).
Peptide-based antibodies against glutathione-binding domains suppress superoxide production mediated by mitochondrial complex I.
  J Biol Chem, 285, 3168-3180.  
20025615 J.Hirst (2010).
Towards the molecular mechanism of respiratory complex I.
  Biochem J, 425, 327-339.  
20345689 J.W.Ballard, and R.G.Melvin (2010).
Linking the mitochondrial genotype to the organismal phenotype.
  Mol Ecol, 19, 1523-1539.  
20667175 K.R.Vinothkumar, and R.Henderson (2010).
Structures of membrane proteins.
  Q Rev Biophys, 43, 65.  
20169582 L.Gille, K.Staniek, T.Rosenau, J.C.Duvigneau, and A.V.Kozlov (2010).
Tocopheryl quinones and mitochondria.
  Mol Nutr Food Res, 54, 601-615.  
20133838 M.M.Roessler, M.S.King, A.J.Robinson, F.A.Armstrong, J.Harmer, and J.Hirst (2010).
Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance.
  Proc Natl Acad Sci U S A, 107, 1930-1935.  
20552642 M.Mckenzie, and M.T.Ryan (2010).
Assembly factors of human mitochondrial complex I and their defects in disease.
  IUBMB Life, 62, 497-502.  
20533897 P.R.Rich, and A.Maréchal (2010).
The mitochondrial respiratory chain.
  Essays Biochem, 47, 1.  
20505720 R.G.Efremov, R.Baradaran, and L.A.Sazanov (2010).
The architecture of respiratory complex I.
  Nature, 465, 441-445.
PDB codes: 3m9c 3m9s
20156111 R.Santos, S.Lefevre, D.Sliwa, A.Seguin, J.M.Camadro, and E.Lesuisse (2010).
Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities.
  Antioxid Redox Signal, 13, 651-690.  
20204450 S.J.Facey, and A.Kuhn (2010).
Biogenesis of bacterial inner-membrane proteins.
  Cell Mol Life Sci, 67, 2343-2362.  
20818735 S.L.Rea, B.H.Graham, E.Nakamaru-Ogiso, A.Kar, and M.J.Falk (2010).
Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases.
  Dev Disabil Res Rev, 16, 200-218.  
20628895 S.P.Albracht (2010).
The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: I. Proposed consequences for electron transfer in the enzyme.
  J Bioenerg Biomembr, 42, 261-278.  
20509166 T.Gustavsson, M.Trane, V.K.Moparthi, E.Miklovyte, L.Moparthi, K.Górecki, T.Leiding, S.P.Arsköld, and C.Hägerhäll (2010).
A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli--expression and characterization of cytochrome-tagged Complex I subunits.
  Protein Sci, 19, 1445-1460.  
20974925 T.Hayashi, and A.A.Stuchebrukhov (2010).
Electron tunneling in respiratory complex I.
  Proc Natl Acad Sci U S A, 107, 19157-19162.  
  20885930 T.Iwasaki (2010).
Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus.
  Archaea, 2010, 0.  
20505714 T.Ohnishi (2010).
Structural biology: Piston drives a proton pump.
  Nature, 465, 428-429.  
19803744 W.J.Koopman, L.G.Nijtmans, C.E.Dieteren, P.Roestenberg, F.Valsecchi, J.A.Smeitink, and P.H.Willems (2010).
Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation.
  Antioxid Redox Signal, 12, 1431-1470.  
20087498 W.Qi, and J.A.Cowan (2010).
A structural and functional homolog supports a general role for frataxin in cellular iron chemistry.
  Chem Commun (Camb), 46, 719-721.  
20385866 Y.W.Huang, C.W.Lin, R.M.Hu, Y.T.Lin, T.C.Chung, and T.C.Yang (2010).
AmpN-AmpG operon is essential for expression of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia.
  Antimicrob Agents Chemother, 54, 2583-2589.  
19752196 A.D.Sheftel, O.Stehling, A.J.Pierik, D.J.Netz, S.Kerscher, H.P.Elsässer, I.Wittig, J.Balk, U.Brandt, and R.Lill (2009).
Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I.
  Mol Cell Biol, 29, 6059-6073.  
19150419 B.Liu, A.K.Tewari, L.Zhang, K.B.Green-Church, J.L.Zweier, Y.R.Chen, and G.He (2009).
Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target.
  Biochim Biophys Acta, 1794, 476-485.  
19156357 F.Cava, A.Hidalgo, and J.Berenguer (2009).
Thermus thermophilus as biological model.
  Extremophiles, 13, 213-231.  
19277114 G.Ng, C.G.Tom, A.S.Park, L.Zenad, and R.A.Ludwig (2009).
A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.
  PLoS ONE, 4, e4695.  
20161522 H.B.Gray, and J.R.Winkler (2009).
Electron Flow through Proteins.
  Chem Phys Lett, 483, 1-9.  
19459785 H.R.Bridges, L.Grgic, M.E.Harbour, and J.Hirst (2009).
The respiratory complexes I from the mitochondria of two Pichia species.
  Biochem J, 422, 151-159.  
19635800 J.M.Berrisford, and L.A.Sazanov (2009).
Structural basis for the mechanism of respiratory complex I.
  J Biol Chem, 284, 29773-29783.
PDB codes: 3i9v 3iam 3ias
19949411 J.M.Shaw, and D.R.Winge (2009).
Shaping the mitochondrion: mitochondrial biogenesis, dynamics and dysfunction. Conference on Mitochondrial Assembly and Dynamics in Health and Disease.
  EMBO Rep, 10, 1301-1305.  
19815558 J.Torres-Bacete, P.K.Sinha, N.Castro-Guerrero, A.Matsuno-Yagi, and T.Yagi (2009).
Features of subunit NuoM (ND4) in Escherichia coli NDH-1: TOPOLOGY AND IMPLICATION OF CONSERVED GLU144 FOR COUPLING SITE 1.
  J Biol Chem, 284, 33062-33069.  
19224924 M.Grininger, H.Staudt, P.Johansson, J.Wachtveitl, and D.Oesterhelt (2009).
Dodecin is the key player in flavin homeostasis of archaea.
  J Biol Chem, 284, 13068-13076.
PDB codes: 2vx9 2vxa
19672299 M.J.Falk, J.R.Rosenjack, E.Polyak, W.Suthammarak, Z.Chen, P.G.Morgan, and M.M.Sedensky (2009).
Subcomplex Ilambda specifically controls integrated mitochondrial functions in Caenorhabditis elegans.
  PLoS One, 4, e6607.  
19061483 M.P.Murphy (2009).
How mitochondria produce reactive oxygen species.
  Biochem J, 417, 1.  
19283345 M.Pandolfo, and A.Pastore (2009).
The pathogenesis of Friedreich ataxia and the structure and function of frataxin.
  J Neurol, 256, 9.  
19220002 M.S.King, M.S.Sharpley, and J.Hirst (2009).
Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
  Biochemistry, 48, 2053-2062.  
19189973 P.K.Sinha, J.Torres-Bacete, E.Nakamaru-Ogiso, N.Castro-Guerrero, A.Matsuno-Yagi, and T.Yagi (2009).
Critical roles of subunit NuoH (ND1) in the assembly of peripheral subunits with the membrane domain of Escherichia coli NDH-1.
  J Biol Chem, 284, 9814-9823.  
19059197 R.Fato, C.Bergamini, M.Bortolus, A.L.Maniero, S.Leoni, T.Ohnishi, and G.Lenaz (2009).
Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.
  Biochim Biophys Acta, 1787, 384-392.  
  20157476 S.Shi, J.Pei, R.I.Sadreyev, L.N.Kinch, I.Majumdar, J.Tong, H.Cheng, B.H.Kim, and N.V.Grishin (2009).
Analysis of CASP8 targets, predictions and assessment methods.
  Database (Oxford), 2009, bap003.  
19366614 V.Zickermann, S.Kerscher, K.Zwicker, M.A.Tocilescu, M.Radermacher, and U.Brandt (2009).
Architecture of complex I and its implications for electron transfer and proton pumping.
  Biochim Biophys Acta, 1787, 574-583.  
18502755 A.Galkin, B.Meyer, I.Wittig, M.Karas, H.Schägger, A.Vinogradov, and U.Brandt (2008).
Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I.
  J Biol Chem, 283, 20907-20913.  
18757546 A.Miura, M.Kameya, H.Arai, M.Ishii, and Y.Igarashi (2008).
A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6.
  J Bacteriol, 190, 7170-7177.  
18563446 C.Remacle, M.R.Barbieri, P.Cardol, and P.P.Hamel (2008).
Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process.
  Mol Genet Genomics, 280, 93.  
18603533 E.Nakamaru-Ogiso, A.Matsuno-Yagi, S.Yoshikawa, T.Yagi, and T.Ohnishi (2008).
Iron-sulfur cluster N5 is coordinated by an HXXXCXXCXXXXXC motif in the NuoG subunit of Escherichia coli NADH:quinone oxidoreductase (complex I).
  J Biol Chem, 283, 25979-25987.  
18631365 E.Pierce, G.Xie, R.D.Barabote, E.Saunders, C.S.Han, J.C.Detter, P.Richardson, T.S.Brettin, A.Das, L.G.Ljungdahl, and S.W.Ragsdale (2008).
The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum).
  Environ Microbiol, 10, 2550-2573.  
18761683 F.Cava, O.Zafra, and J.Berenguer (2008).
A cytochrome c containing nitrate reductase plays a role in electron transport for denitrification in Thermus thermophilus without involvement of the bc respiratory complex.
  Mol Microbiol, 70, 507-518.  
18818697 F.Pazos, and A.Valencia (2008).
Protein co-evolution, co-adaptation and interactions.
  EMBO J, 27, 2648-2655.  
17992543 J.Meyer (2008).
Iron-sulfur protein folds, iron-sulfur chemistry, and evolution.
  J Biol Inorg Chem, 13, 157-170.  
18789718 L.Zhang, H.Xu, C.L.Chen, K.B.Green-Church, M.A.Freitas, and Y.R.Chen (2008).
Mass spectrometry profiles superoxide-induced intramolecular disulfide in the FMN-binding subunit of mitochondrial Complex I.
  J Am Soc Mass Spectrom, 19, 1875-1886.  
18843528 M.Hüttemann, I.Lee, A.Pecinova, P.Pecina, K.Przyklenk, and J.W.Doan (2008).
Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease.
  J Bioenerg Biomembr, 40, 445-456.  
18316732 M.L.Verkhovskaya, N.Belevich, L.Euro, M.Wikström, and M.I.Verkhovsky (2008).
Real-time electron transfer in respiratory complex I.
  Proc Natl Acad Sci U S A, 105, 3763-3767.  
18781777 N.Ichimaru, M.Murai, N.Kakutani, J.Kako, A.Ishihara, Y.Nakagawa, T.Nishioka, T.Yagi, and H.Miyoshi (2008).
Synthesis and characterization of new piperazine-type inhibitors for mitochondrial NADH-ubiquinone oxidoreductase (complex I).
  Biochemistry, 47, 10816-10826.  
18839290 N.V.Dudkina, S.Sunderhaus, E.J.Boekema, and H.P.Braun (2008).
The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
  J Bioenerg Biomembr, 40, 419-424.  
18551278 P.C.Lin, A.Puhar, and J.Steuber (2008).
NADH oxidation drives respiratory Na+ transport in mitochondria from Yarrowia lipolytica.
  Arch Microbiol, 190, 471-480.  
18846415 P.R.Rich (2008).
A perspective on Peter Mitchell and the chemiosmotic theory.
  J Bioenerg Biomembr, 40, 407-410.  
18366324 R.Lill, and U.Mühlenhoff (2008).
Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases.
  Annu Rev Biochem, 77, 669-700.  
18541140 R.Sugitani, E.S.Medvedev, and A.A.Stuchebrukhov (2008).
Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme.
  Biochim Biophys Acta, 1777, 1129-1139.  
18829451 T.F.Oliveira, C.Vonrhein, P.M.Matias, S.S.Venceslau, I.A.Pereira, and M.Archer (2008).
The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration.
  J Biol Chem, 283, 34141-34149.
PDB code: 2v4j
18486592 T.Ohnishi, and E.Nakamaru-Ogiso (2008).
Were there any "misassignments" among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)?
  Biochim Biophys Acta, 1777, 703-710.  
  19096096 T.Ohnishi, S.T.Ohnishi, K.Shinzawa-Ito, and S.Yoshikawa (2008).
Functional role of coenzyme Q in the energy coupling of NADH-CoQ oxidoreductase (Complex I): stabilization of the semiquinone state with the application of inside-positive membrane potential to proteoliposomes.
  Biofactors, 32, 13-22.  
18611857 T.R.Hurd, R.Requejo, A.Filipovska, S.Brown, T.A.Prime, A.J.Robinson, I.M.Fearnley, and M.P.Murphy (2008).
Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage.
  J Biol Chem, 283, 24801-24815.  
18667702 T.Reda, C.M.Plugge, N.J.Abram, and J.Hirst (2008).
Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.
  Proc Natl Acad Sci U S A, 105, 10654-10658.  
18982432 V.Zickermann, S.Dröse, M.A.Tocilescu, K.Zwicker, S.Kerscher, and U.Brandt (2008).
Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I).
  J Bioenerg Biomembr, 40, 475-483.  
17583799 A.C.Gemperli, C.Schaffitzel, C.Jakob, and J.Steuber (2007).
Transport of Na(+) and K (+) by an antiporter-related subunit from the Escherichia coli NADH dehydrogenase I produced in Saccharomyces cerevisiae.
  Arch Microbiol, 188, 509-521.  
17635416 A.J.Lambert, and M.D.Brand (2007).
Research on mitochondria and aging, 2006-2007.
  Aging Cell, 6, 417-420.  
17854275 A.K.Doughan, and S.I.Dikalov (2007).
Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis.
  Antioxid Redox Signal, 9, 1825-1836.  
17250770 A.M.Burroughs, S.Balaji, L.M.Iyer, and L.Aravind (2007).
A novel superfamily containing the beta-grasp fold involved in binding diverse soluble ligands.
  Biol Direct, 2, 4.  
17605815 A.M.Burroughs, S.Balaji, L.M.Iyer, and L.Aravind (2007).
Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold.
  Biol Direct, 2, 18.  
17444656 C.L.Chen, L.Zhang, A.Yeh, C.A.Chen, K.B.Green-Church, J.L.Zweier, and Y.R.Chen (2007).
Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase.
  Biochemistry, 46, 5754-5765.  
17506638 D.C.Wallace (2007).
Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine.
  Annu Rev Biochem, 76, 781-821.  
17640900 G.Yakovlev, T.Reda, and J.Hirst (2007).
Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase.
  Proc Natl Acad Sci U S A, 104, 12720-12725.  
17436066 H.Sugiyama, R.Nakatsubo, S.Yamaguchi, T.Ogura, K.Shinzawa-Itoh, and S.Yoshikawa (2007).
Resonance Raman spectra of the FMN of the bovine heart NADH: ubiquinone oxidoreductase, the largest membrane protein in the mitochondrial respiratory system.
  J Bioenerg Biomembr, 39, 145-148.  
18037377 I.S.Gostimskaya, V.G.Grivennikova, G.Cecchini, and A.D.Vinogradov (2007).
Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
  FEBS Lett, 581, 5803-5806.  
18240421 M.Hüttemann, I.Lee, L.Samavati, H.Yu, and J.W.Doan (2007).
Regulation of mitochondrial oxidative phosphorylation through cell signaling.
  Biochim Biophys Acta, 1773, 1701-1720.  
17438127 M.Lazarou, M.McKenzie, A.Ohtake, D.R.Thorburn, and M.T.Ryan (2007).
Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I.
  Mol Cell Biol, 27, 4228-4237.  
16969669 M.Long, J.Liu, Z.Chen, B.Bleijlevens, W.Roseboom, and S.P.Albracht (2007).
Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module.
  J Biol Inorg Chem, 12, 62-78.  
18251921 N.Battchikova, and E.M.Aro (2007).
Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition.
  Physiol Plant, 131, 22-32.  
17557793 N.Buzhynskyy, P.Sens, V.Prima, J.N.Sturgis, and S.Scheuring (2007).
Rows of ATP synthase dimers in native mitochondrial inner membranes.
  Biophys J, 93, 2870-2876.  
17521330 P.Cermáková, Z.Verner, P.Man, J.Lukes, and A.Horváth (2007).
Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida).
  FEBS J, 274, 3150-3158.  
17591445 T.Clason, V.Zickermann, T.Ruiz, U.Brandt, and M.Radermacher (2007).
Direct localization of the 51 and 24 kDa subunits of mitochondrial complex I by three-dimensional difference imaging.
  J Struct Biol, 159, 433-442.  
17650323 T.Pohl, J.Walter, S.Stolpe, J.H.Soufo, P.L.Grauman, and T.Friedrich (2007).
Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase.
  BMC Biochem, 8, 13.  
17760425 V.G.Grivennikova, A.B.Kotlyar, J.S.Karliner, G.Cecchini, and A.D.Vinogradov (2007).
Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
  Biochemistry, 46, 10971-10978.  
16631892 C.Blakemore, and J.Davidson (2006).
Putting a value on medical research.
  Lancet, 367, 1293-1295.  
17010373 J.Chartron, K.S.Carroll, C.Shiau, H.Gao, J.A.Leary, C.R.Bertozzi, and C.D.Stout (2006).
Substrate recognition, protein dynamics, and iron-sulfur cluster in Pseudomonas aeruginosa adenosine 5'-phosphosulfate reductase.
  J Mol Biol, 364, 152-169.
PDB code: 2goy
17050691 J.Zhang, F.E.Frerman, and J.J.Kim (2006).
Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
  Proc Natl Acad Sci U S A, 103, 16212-16217.
PDB codes: 2gmh 2gmj
16911956 K.Z.Bencze, K.C.Kondapalli, J.D.Cook, S.McMahon, C.Millán-Pacheco, N.Pastor, and T.L.Stemmler (2006).
The structure and function of frataxin.
  Crit Rev Biochem Mol Biol, 41, 269-291.  
16682634 L.Kussmaul, and J.Hirst (2006).
The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
  Proc Natl Acad Sci U S A, 103, 7607-7612.  
17092311 M.V.Busi, M.V.Maliandi, H.Valdez, M.Clemente, E.J.Zabaleta, A.Araya, and D.F.Gomez-Casati (2006).
Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress.
  Plant J, 48, 873-882.  
16838076 R.J.Janssen, L.G.Nijtmans, L.P.van den Heuvel, and J.A.Smeitink (2006).
Mitochondrial complex I: structure, function and pathology.
  J Inherit Metab Dis, 29, 499-515.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.