spacer
spacer

PDBsum entry 2ctn

Go to PDB code: 
protein metals links
Calcium-binding protein PDB id
2ctn

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
88 a.a. *
Metals
_CA
* Residue conservation analysis
PDB id:
2ctn
Name: Calcium-binding protein
Title: Structure of calcium-saturated cardiac troponin c, nmr, 30 structures
Structure: Troponin c. Chain: a. Fragment: regulatory n-domain residues 2 - 89. Synonym: ctnc. Engineered: yes. Mutation: yes. Other_details: cardiac troponin c with calcium ion bound at site ii
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Cell_line: bl21. Organ: heart. Tissue: muscle. Cellular_location: thin filament. Gene: ctnc(a-cys). Expressed in: escherichia coli.
NMR struc: 30 models
Authors: S.K.Sia,M.X.Li,L.Spyracopoulos,S.M.Gagne,W.Liu,J.A.Putkey,B.D.Sykes
Key ref:
S.K.Sia et al. (1997). Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem, 272, 18216-18221. PubMed id: 9218458 DOI: 10.1074/jbc.272.29.18216
Date:
06-May-97     Release date:   06-May-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P09860  (TNNC1_CHICK) -  Troponin C, slow skeletal and cardiac muscles from Gallus gallus
Seq:
Struc:
161 a.a.
88 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1074/jbc.272.29.18216 J Biol Chem 272:18216-18221 (1997)
PubMed id: 9218458  
 
 
Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain.
S.K.Sia, M.X.Li, L.Spyracopoulos, S.M.Gagné, W.Liu, J.A.Putkey, B.D.Sykes.
 
  ABSTRACT  
 
The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardiac TnC in the Ca2+-saturated state has been determined by nuclear magnetic resonance spectroscopy. The regulatory domain exists in a "closed" conformation even in the Ca2+-bound (the "on") state, in contrast to all predicted models and differing significantly from the calcium-induced structure observed in skeletal TnC. This structure in the Ca2+-bound state, and its subsequent interaction with troponin I (TnI), are crucial in determining the specific regulatory mechanism for cardiac muscle contraction. Further, it will allow for an understanding of the action of calcium-sensitizing drugs, which bind to cardiac TnC and are known to enhance the ability of cardiac TnC to activate cardiac muscle contraction.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Structure of Ca^2+-saturated cardiac TnC as determined in this study (sequence starts at Ala^2 and ends at Val161). The -helices are approximately as follows: N-helix (residues 6-10), A-helix (14-28), B-helix (38-48), C-helix (54-64), D-helix (74-83), E-helix (95-103), F-helix (114-123), G-helix (130-140), H-helix (150-158). The antiparallel -sheets connect residues 35-37 and 71-73 in the N-domain, and residues 111-113 and 147-149^ in the C-domain. All regions of the molecule are well defined, with the exceptions of the following regions: the N- and C-terminal residues (2-4 and 159-161), residues 30-33 of defunct site I, residues 49-55 of the B-C linker, residues 66-68 of site II, the^ central linker (86-94), and residues 125-129 of the F-G linker. Stereo views of the superposition of 30 structures for the regulatory N-domain (residues 5-84, A) and the structural C-domain (95-158, B) are shown. Positions of the Ca^2+ ions are indicated by gray spheres. This figure was prepared^ with the program RASTER3D (37).
Figure 4.
Fig. 4. Comparison of the surface structures of the regulatory N-domains of 4Ca·skeletal TnC (NMR) (A), 3Ca·cardiac TnC (NMR) (B), and 3Ca·cardiac TnC (model, Ref. 9) (C), displayed in the same^ orientation as Fig. 1A. Side chains of hydrophobic residues (Ala, Ile, Leu, Met, Pro, Phe, Tyr, and Val) are shown in yellow, negatively charged residues (Asp and Glu) in red, positively charged^ residues (Arg and Lys) in blue, and all other residues in gray. The major hydrophobic pocket of 3Ca·cardiac TnC involves residues Phe^20, Phe^24, Leu48, Phe^74, Phe^77, Leu78, Met81, and Met85, and residues Ile^36, Leu41, Met45, Leu57, Met60, Ile^61, Val64, Val72, and Met80. Other hydrophobic contacts are also observed from Phe^20, Ala^23, and Phe^27 of the A-helix to Val44, Met47, and Leu48 of the B-helix, and from Ala^8, Val9, and Leu12 of the N-helix to Leu78, Val79, and Val82 of the D-helix. This figure was generated using the program GRASP (38).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1997, 272, 18216-18221) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20004664 Y.B.Sun, and M.Irving (2010).
The molecular basis of the steep force-calcium relation in heart muscle.
  J Mol Cell Cardiol, 48, 859-865.  
19542563 I.M.Robertson, M.X.Li, and B.D.Sykes (2009).
Solution structure of human cardiac troponin C in complex with the green tea polyphenol, (-)-epigallocatechin 3-gallate.
  J Biol Chem, 284, 23012-23023.
PDB code: 2kdh
18280495 E.Johnson, L.Bruschweiler-Li, S.A.Showalter, G.W.Vuister, F.Zhang, and R.Brüschweiler (2008).
Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+.
  J Mol Biol, 377, 945-955.  
18570382 I.M.Robertson, O.K.Baryshnikova, M.X.Li, and B.D.Sykes (2008).
Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex.
  Biochemistry, 47, 7485-7495.  
18162171 M.X.Li, I.M.Robertson, and B.D.Sykes (2008).
Interaction of cardiac troponin with cardiotonic drugs: a structural perspective.
  Biochem Biophys Res Commun, 369, 88-99.  
18398685 O.K.Baryshnikova, T.C.Williams, and B.D.Sykes (2008).
Internal pH indicators for biomolecular NMR.
  J Biomol NMR, 41, 5-7.  
16302972 A.Schmidtmann, C.Lindow, S.Villard, A.Heuser, A.Mügge, R.Gessner, C.Granier, and K.Jaquet (2005).
Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C.
  FEBS J, 272, 6087-6097.  
15784741 M.V.Vinogradova, D.B.Stone, G.G.Malanina, C.Karatzaferi, R.Cooke, R.A.Mendelson, and R.J.Fletterick (2005).
Ca(2+)-regulated structural changes in troponin.
  Proc Natl Acad Sci U S A, 102, 5038-5043.
PDB codes: 1ytz 1yv0
15709952 T.Kobayashi, and R.J.Solaro (2005).
Calcium, thin filaments, and the integrative biology of cardiac contractility.
  Annu Rev Physiol, 67, 39-67.  
16131667 X.Wang, P.Mercier, P.J.Letourneau, and B.D.Sykes (2005).
Effects of Phe-to-Trp mutation and fluorotryptophan incorporation on the solution structure of cardiac troponin C, and analysis of its suitability as a potential probe for in situ NMR studies.
  Protein Sci, 14, 2447-2460.
PDB codes: 2jt0 2jt3 2jt8 2jtz
14765112 B.Agianian, U.Krzic, F.Qiu, W.A.Linke, K.Leonard, and B.Bullard (2004).
A troponin switch that regulates muscle contraction by stretch instead of calcium.
  EMBO J, 23, 772-779.  
14978304 G.L.Gay, D.A.Lindhout, and B.D.Sykes (2004).
Using lanthanide ions to align troponin complexes in solution: order of lanthanide occupancy in cardiac troponin C.
  Protein Sci, 13, 640-651.  
15345560 M.Regnier, H.Martin, R.J.Barsotti, A.J.Rivera, D.A.Martyn, and E.Clemmens (2004).
Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle.
  Biophys J, 87, 1815-1824.  
15711886 M.X.Li, X.Wang, and B.D.Sykes (2004).
Structural based insights into the role of troponin in cardiac muscle pathophysiology.
  J Muscle Res Cell Motil, 25, 559-579.  
12886291 B.D.Sykes (2003).
Pulling the calcium trigger.
  Nat Struct Biol, 10, 588-589.  
12547787 C.Sheldahl, J.Xing, W.J.Dong, S.C.Harvey, and H.C.Cheung (2003).
The calcium-saturated cTnI/cTnC complex: structure of the inhibitory region of cTnI.
  Biophys J, 84, 1057-1064.  
14661957 M.X.Li, X.Wang, D.A.Lindhout, N.Buscemi, J.E.Van Eyk, and B.D.Sykes (2003).
Phosphorylation and mutation of human cardiac troponin I deferentially destabilize the interaction of the functional regions of troponin I with troponin C.
  Biochemistry, 42, 14460-14468.  
12044157 D.A.Lindhout, M.X.Li, D.Schieve, and B.D.Sykes (2002).
Effects of T142 phosphorylation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C.
  Biochemistry, 41, 7267-7274.  
12239350 L.J.Brown, K.L.Sale, R.Hills, C.Rouviere, L.Song, X.Zhang, and P.G.Fajer (2002).
Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance.
  Proc Natl Acad Sci U S A, 99, 12765-12770.  
11371454 D.A.Martyn, and A.M.Gordon (2001).
Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle.
  Biophys J, 80, 2798-2808.  
11159408 D.A.Martyn, M.Regnier, D.Xu, and A.M.Gordon (2001).
Ca2+ - and cross-bridge-dependent changes in N- and C-terminal structure of troponin C in rat cardiac muscle.
  Biophys J, 80, 360-370.  
11054120 K.Pääkkönen, T.Sorsa, T.Drakenberg, P.Pollesello, C.Tilgmann, P.Permi, S.Heikkinen, I.Kilpeläinen, and A.Annila (2000).
Conformations of the regulatory domain of cardiac troponin C examined by residual dipolar couplings.
  Eur J Biochem, 267, 6665-6672.  
10913289 M.X.Li, L.Spyracopoulos, N.Beier, J.A.Putkey, and B.D.Sykes (2000).
Interaction of cardiac troponin C with Ca(2+) sensitizer EMD 57033 and cardiac troponin I inhibitory peptide.
  Biochemistry, 39, 8782-8790.  
11090126 P.Kischel, B.Bastide, J.D.Potter, and Y.Mounier (2000).
The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil.
  Br J Pharmacol, 131, 1496-1502.  
10715110 P.Mercier, M.X.Li, and B.D.Sykes (2000).
Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1-40 and 96-115 of troponin I.
  Biochemistry, 39, 2902-2911.  
11027154 R.T.McKay, L.F.Saltibus, M.X.Li, and B.D.Sykes (2000).
Energetics of the induced structural change in a Ca2+ regulatory protein: Ca2+ and troponin I peptide binding to the E41A mutant of the N-domain of skeletal troponin C.
  Biochemistry, 39, 12731-12738.  
  10716180 W.J.Dong, J.M.Robinson, J.Xing, P.K.Umeda, and H.C.Cheung (2000).
An interdomain distance in cardiac troponin C determined by fluorescence spectroscopy.
  Protein Sci, 9, 280-289.  
11056032 W.J.Dong, J.Xing, M.Chandra, J.Solaro, and H.C.Cheung (2000).
Structural mapping of single cysteine mutants of cardiac troponin I.
  Proteins, 41, 438-447.  
10792039 Y.Li, M.L.Love, J.A.Putkey, and C.Cohen (2000).
Bepridil opens the regulatory N-terminal lobe of cardiac troponin C.
  Proc Natl Acad Sci U S A, 97, 5140-5145.
PDB code: 1dtl
10439508 F.Wang, W.Li, M.R.Emmett, A.G.Marshall, D.Corson, and B.D.Sykes (1999).
Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C.
  J Am Soc Mass Spectrom, 10, 703-710.  
10387077 G.M.Gasmi-Seabrook, J.W.Howarth, N.Finley, E.Abusamhadneh, V.Gaponenko, R.M.Brito, R.J.Solaro, and P.R.Rosevear (1999).
Solution structures of the C-terminal domain of cardiac troponin C free and bound to the N-terminal domain of cardiac troponin I.
  Biochemistry, 38, 8313-8322.
PDB codes: 1fi5 1ggs
9876151 L.Smith, N.J.Greenfield, and S.E.Hitchcock-DeGregori (1999).
Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function.
  Biophys J, 76, 400-408.  
10387074 M.X.Li, L.Spyracopoulos, and B.D.Sykes (1999).
Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C.
  Biochemistry, 38, 8289-8298.
PDB code: 1mxl
10516660 P.Kischel, L.Stevens, and Y.Mounier (1999).
Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles.
  Br J Pharmacol, 128, 767-773.  
10220335 R.T.McKay, B.P.Tripet, J.R.Pearlstone, L.B.Smillie, and B.D.Sykes (1999).
Defining the region of troponin-I that binds to troponin-C.
  Biochemistry, 38, 5478-5489.  
9922172 L.Spyracopoulos, S.M.Gagné, M.X.Li, and B.D.Sykes (1998).
Dynamics and thermodynamics of the regulatory domain of human cardiac troponin C in the apo- and calcium-saturated states.
  Biochemistry, 37, 18032-18044.  
9730814 R.T.McKay, J.R.Pearlstone, D.C.Corson, S.M.Gagné, L.B.Smillie, and B.D.Sykes (1998).
Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96-148 region of troponin-I.
  Biochemistry, 37, 12419-12430.
PDB code: 1blq
9315850 L.Spyracopoulos, M.X.Li, S.K.Sia, S.M.Gagné, M.Chandra, R.J.Solaro, and B.D.Sykes (1997).
Calcium-induced structural transition in the regulatory domain of human cardiac troponin C.
  Biochemistry, 36, 12138-12146.
PDB codes: 1ap4 1spy
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer