spacer
spacer

PDBsum entry 2cga

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase(zymogen) PDB id
2cga
Jmol
Contents
Protein chains
245 a.a. *
Waters ×329
* Residue conservation analysis
PDB id:
2cga
Name: Hydrolase(zymogen)
Title: Bovine chymotrypsinogen a. X-ray crystal structure analysis and refinement of a new crystal form at 1.8 angstroms resolution
Structure: Chymotrypsinogen a. Chain: a, b. Engineered: yes
Source: Bos taurus. Cattle. Organism_taxid: 9913
Resolution:
1.80Å     R-factor:   0.173    
Authors: D.Wang,W.Bode,R.Huber
Key ref:
D.Wang et al. (1985). Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol, 185, 595-624. PubMed id: 4057257 DOI: 10.1016/0022-2836(85)90074-9
Date:
16-Jan-87     Release date:   16-Apr-87    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00766  (CTRA_BOVIN) -  Chymotrypsinogen A
Seq:
Struc:
245 a.a.
245 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.21.1  - Chymotrypsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Preferential cleavage: Tyr-|-Xaa, Trp-|-Xaa, Phe-|-Xaa, Leu-|-Xaa.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   2 terms 
  Biological process     digestion   2 terms 
  Biochemical function     catalytic activity     6 terms  

 

 
DOI no: 10.1016/0022-2836(85)90074-9 J Mol Biol 185:595-624 (1985)
PubMed id: 4057257  
 
 
Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution.
D.Wang, W.Bode, R.Huber.
 
  ABSTRACT  
 
The X-ray structure of a new crystal form of chymotrypsinogen A grown from ethanol/water has been determined at 1.8 A resolution using Patterson search techniques. The crystals are of orthorhombic space group P212121 and contain two molecules in the asymmetric unit. Both independent molecules (referred to as A and B) have been crystallographically refined to a final R value of 0.173 with reflection data to 1.8 A resolution. Owing to different crystal contacts, both independent molecules show at various sites conformational differences, especially in segments 33-38, 142-153 and 215-222. If these three loops are omitted in a comparison, the root-mean-square (r.m.s.) deviation of the main-chain atoms of molecules A and B is 0.32 A. If segments 70-79, 143-152 and 215-221 are omitted, a comparison of either molecule A or molecule B with the chymotrypsinogen model of Freer et al. (1970) reveals an r.m.s. deviation of the alpha-carbon atoms of about 0.7 A. Compared with the active enzyme, four spatially adjacent peptide segments, in particular, are differently organized in the zymogen: the amino-terminal segment 11-19 runs in a rigid but strained conformation along the molecular surface due to the covalent linkage through Cys1; also segment 184-194 is in a rigid unique conformation due to several mutually stabilizing interactions with the amino-terminal segment; segment 216-222, which also lines the specificity pocket, adapts to different crystal contacts and exists in both chymotrypsinogen molecules in different, but defined conformations; in particular, disulfide bridge 191-220, which covalently links both latter segments, has opposite handedness in molecules A and B; finally, the autolysis loop 142 to 153 is organized in a variety of ways and in its terminal part is completely disordered. Thus, the allosteric activation domain (Huber & Bode, 1978) is organized in defined although different conformations in chymotrypsinogen molecules A and B, in contrast to trypsinogen, where all four homologous segments of the activation domain are disordered. This reflects the structural variability and deformability of the activation domain in serine proteinase proenzymes. If the aforementioned peptide segments are omitted, a comparison of our chymotrypsinogen models with gamma-chymotrypsin (Cohen et al., 1981) yields an r.m.s. deviation for alpha-carbon atoms of about 0.5 A. The residues of the "active site triad" are arranged similarly, but the oxyanion hole is lacking in chymotrypsinogen.(ABSTRACT TRUNCATED AT 400 WORDS)
 
  Selected figure(s)  
 
Figure 10.
Figure 10. Section of the final Fourier map of ehymotrypsinogen around Ser195 of (a) molecule A and (b) molecule B superimposed on the model. The side-cain confomation of Ser195 of molecule B was chosen arbitrarily. Residues that belong to neihboring molecules are labeled with an asterisk.
Figure 16.
Figure 16. Residues round Asp194 of chymotrypsinogen molecule A (fille bar connections) optimally superimposed on the homoogous residues o 7-chymotrypsin (double line connections). Orientation as o Fig. 9.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1985, 185, 595-624) copyright 1985.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20180651 A.A.Stoop, R.V.Joshi, C.T.Eggers, and C.S.Craik (2010).
Analysis of an engineered plasma kallikrein inhibitor and its effect on contact activation.
  Biol Chem, 391, 425-433.  
20809655 A.D.Vogt, A.Bah, and E.Di Cera (2010).
Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa.
  J Phys Chem B, 114, 16125-16130.  
20423453 E.Hajjar, T.Broemstrup, C.Kantari, V.Witko-Sarsat, and N.Reuter (2010).
Structures of human proteinase 3 and neutrophil elastase--so similar yet so different.
  FEBS J, 277, 2238-2254.  
20974933 Z.Chen, L.A.Pelc, and E.Di Cera (2010).
Crystal structure of prethrombin-1.
  Proc Natl Acad Sci U S A, 107, 19278-19283.
PDB code: 3nxp
19473969 A.Bah, C.J.Carrell, Z.Chen, P.S.Gandhi, and E.Di Cera (2009).
Stabilization of the E* form turns thrombin into an anticoagulant.
  J Biol Chem, 284, 20034-20040.
PDB code: 3gic
19180666 E.Di Cera (2009).
Serine proteases.
  IUBMB Life, 61, 510-515.  
18184865 A.Venceslá, M.A.Corral-Rodríguez, M.Baena, M.Cornet, M.Domènech, M.Baiget, P.Fuentes-Prior, and E.F.Tizzano (2008).
Identification of 31 novel mutations in the F8 gene in Spanish hemophilia A patients: structural analysis of 20 missense mutations suggests new intermolecular binding sites.
  Blood, 111, 3468-3478.  
17981788 J.Kervinen, M.Abad, C.Crysler, M.Kolpak, A.D.Mahan, J.A.Masucci, S.Bayoumy, M.D.Cummings, X.Yao, M.Olson, L.de Garavilla, L.Kuo, I.Deckman, and J.Spurlino (2008).
Structural basis for elastolytic substrate specificity in rodent alpha-chymases.
  J Biol Chem, 283, 427-436.
PDB code: 2rdl
18751692 J.Mátrai, A.Jonckheer, E.Joris, P.Krüger, E.Carpenter, J.Tuszynski, M.De Maeyer, and Y.Engelborghs (2008).
Exploration of the activation pathway of Deltaalpha-Chymotrypsin with molecular dynamics simulations and correlation with kinetic experiments.
  Eur Biophys J, 38, 13-23.  
17287215 S.Piao, S.Kim, J.H.Kim, J.W.Park, B.L.Lee, and N.C.Ha (2007).
Crystal structure of the serine protease domain of prophenoloxidase activating factor-I.
  J Biol Chem, 282, 10783-10791.
PDB code: 2olg
16800736 C.V.Obiezu, I.P.Michael, M.A.Levesque, and E.P.Diamandis (2006).
Human kallikrein 4: enzymatic activity, inhibition, and degradation of extracellular matrix proteins.
  Biol Chem, 387, 749-759.  
16604514 D.G.Fedorov, K.Kitaura, H.Li, J.H.Jensen, and M.S.Gordon (2006).
The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
  J Comput Chem, 27, 976-985.  
16362048 S.Piao, Y.L.Song, J.H.Kim, S.Y.Park, J.W.Park, B.L.Lee, B.H.Oh, and N.C.Ha (2005).
Crystal structure of a clip-domain serine protease and functional roles of the clip domains.
  EMBO J, 24, 4404-4414.
PDB code: 2b9l
15090552 A.E.Schmidt, T.Ogawa, D.Gailani, and S.P.Bajaj (2004).
Structural role of Gly(193) in serine proteases: investigations of a G555E (GLY193 in chymotrypsin) mutant of blood coagulation factor XI.
  J Biol Chem, 279, 29485-29492.  
15322291 G.Verheyden, J.Matrai, G.Volckaert, and Y.Engelborghs (2004).
A fluorescence stopped-flow kinetic study of the conformational activation of alpha-chymotrypsin and several mutants.
  Protein Sci, 13, 2533-2540.  
15557259 J.Mátrai, G.Verheyden, P.Krüger, and Y.Engelborghs (2004).
Simulation of the activation of alpha-chymotrypsin: analysis of the pathway and role of the propeptide.
  Protein Sci, 13, 3139-3150.  
15211511 S.Terzyan, N.Wakeham, P.Zhai, K.Rodgers, and X.C.Zhang (2004).
Characterization of Lys-698-to-Met substitution in human plasminogen catalytic domain.
  Proteins, 56, 277-284.
PDB code: 1rjx
12813065 C.Eberhardt, L.Kuerschner, and D.S.Weiss (2003).
Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams.
  J Bacteriol, 185, 3726-3734.  
12939269 P.J.Anderson, A.Nesset, and P.E.Bock (2003).
Effects of activation peptide bond cleavage and fragment 2 interactions on the pathway of exosite I expression during activation of human prethrombin 1 to thrombin.
  J Biol Chem, 278, 44482-44488.  
12595722 Z.Zhu, P.Gong, M.Teng, and L.Niu (2003).
Purification, N-terminal sequencing, partial characterization, crystallization and preliminary crystallographic analysis of two glycosylated serine proteinases from Agkistrodon acutus venom.
  Acta Crystallogr D Biol Crystallogr, 59, 547-550.  
12016211 F.X.Gomis-Rüth, A.Bayés, G.Sotiropoulou, G.Pampalakis, T.Tsetsenis, V.Villegas, F.X.Avilés, and M.Coll (2002).
The structure of human prokallikrein 6 reveals a novel activation mechanism for the kallikrein family.
  J Biol Chem, 277, 27273-27281.
PDB code: 1gvl
11823416 M.Budayova-Spano, M.Lacroix, N.M.Thielens, G.J.Arlaud, J.C.Fontecilla-Camps, and C.Gaboriaud (2002).
The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex.
  EMBO J, 21, 231-239.
PDB code: 1gpz
11733020 A.Bódi, G.Kaslik, I.Venekei, and L.Gráf (2001).
Structural determinants of the half-life and cleavage site preference in the autolytic inactivation of chymotrypsin.
  Eur J Biochem, 268, 6238-6246.  
11170384 D.Kirchhofer, C.Eigenbrot, M.T.Lipari, P.Moran, M.Peek, and R.F.Kelley (2001).
The tissue factor region that interacts with factor Xa in the activation of factor VII.
  Biochemistry, 40, 675-682.  
11168406 R.Egelund, T.E.Petersen, and P.A.Andreasen (2001).
A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism.
  Eur J Biochem, 268, 673-685.  
10713514 A.Mac Sweeney, G.Birrane, M.A.Walsh, T.O'Connell, J.P.Malthouse, and T.M.Higgins (2000).
Crystal structure of delta-chymotrypsin bound to a peptidyl chloromethyl ketone inhibitor.
  Acta Crystallogr D Biol Crystallogr, 56, 280-286.
PDB code: 1dlk
10757995 E.S.Courtenay, M.W.Capp, C.F.Anderson, and M.T.Record (2000).
Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro.
  Biochemistry, 39, 4455-4471.  
11106601 L.Perera, C.Foley, T.A.Darden, D.Stafford, T.Mather, C.T.Esmon, and L.G.Pedersen (2000).
Modeling zymogen protein C.
  Biophys J, 79, 2925-2943.  
10500112 C.P.Sommerhoff, W.Bode, P.J.Pereira, M.T.Stubbs, J.Stürzebecher, G.P.Piechottka, G.Matschiner, and A.Bergner (1999).
The structure of the human betaII-tryptase tetramer: fo(u)r better or worse.
  Proc Natl Acad Sci U S A, 96, 10984-10991.  
10429182 E.Szabó, Z.Böcskei, G.Náray-Szabó, and L.Gráf (1999).
The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the protease.
  Eur J Biochem, 263, 20-26.
PDB code: 1amh
10022823 H.Jing, K.J.Macon, D.Moore, L.J.DeLucas, J.E.Volanakis, and S.V.Narayana (1999).
Structural basis of profactor D activation: from a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D.
  EMBO J, 18, 804-814.
PDB code: 1fdp
10223294 K.E.Knobe, A.Berntsdotter, L.Shen, J.Morser, B.Dahlbäck, and B.O.Villoutreix (1999).
Probing the activation of protein C by the thrombin-thrombomodulin complex using structural analysis, site-directed mutagenesis, and computer modeling.
  Proteins, 35, 218-234.  
10328262 T.K.Harris, and A.S.Mildvan (1999).
High-precision measurement of hydrogen bond lengths in proteins by nuclear magnetic resonance methods.
  Proteins, 35, 275-282.  
10329693 W.Yan, N.Sheng, M.Seto, J.Morser, and Q.Wu (1999).
Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart.
  J Biol Chem, 274, 14926-14935.  
  9568890 A.R.Khan, and M.N.James (1998).
Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes.
  Protein Sci, 7, 815-836.  
9788942 B.L.Neal, D.Asthagiri, and A.M.Lenhoff (1998).
Molecular origins of osmotic second virial coefficients of proteins.
  Biophys J, 75, 2469-2477.  
9928078 C.L.Tsou (1998).
Active site flexibility in enzyme catalysis.
  Ann N Y Acad Sci, 864, 1-8.  
9753698 M.A.Parry, U.Jacob, R.Huber, A.Wisner, C.Bon, and W.Bode (1998).
The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases.
  Structure, 6, 1195-1206.
PDB code: 1bqy
  9524060 M.T.Stubbs, M.Renatus, and W.Bode (1998).
An active zymogen: unravelling the mystery of tissue-type plasminogen activator.
  Biol Chem, 379, 95.  
  9007985 A.J.Gale, X.Sun, M.J.Heeb, and J.H.Griffin (1997).
Nonenzymatic anticoagulant activity of the mutant serine protease Ser360Ala-activated protein C mediated by factor Va.
  Protein Sci, 6, 132-140.  
  9232645 M.G.Malkowski, P.D.Martin, J.C.Guzik, and B.F.Edwards (1997).
The co-crystal structure of unliganded bovine alpha-thrombin and prethrombin-2: movement of the Tyr-Pro-Pro-Trp segment and active site residues upon ligand binding.
  Protein Sci, 6, 1438-1448.
PDB codes: 1mkw 1mkx
9174342 M.Lacroix, V.Rossi, C.Gaboriaud, S.Chevallier, M.Jaquinod, N.M.Thielens, J.Gagnon, and G.J.Arlaud (1997).
Structure and assembly of the catalytic region of human complement protease C1r: a three-dimensional model based on chemical cross-linking and homology modeling.
  Biochemistry, 36, 6270-6282.  
9354616 M.Renatus, M.T.Stubbs, R.Huber, P.Bringmann, P.Donner, W.D.Schleuning, and W.Bode (1997).
Catalytic domain structure of vampire bat plasminogen activator: a molecular paradigm for proteolysis without activation cleavage.
  Biochemistry, 36, 13483-13493.
PDB code: 1a5i
9305622 M.Renatus, R.A.Engh, M.T.Stubbs, R.Huber, S.Fischer, U.Kohnert, and W.Bode (1997).
Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray crystal structure of single-chain human tPA.
  EMBO J, 16, 4797-4805.
PDB code: 1bda
9188684 P.P.Berna, N.T.Mrabet, J.Van Beeumen, B.Devreese, J.Porath, and M.A.Vijayalakshmi (1997).
Residue accessibility, hydrogen bonding, and molecular recognition: metal-chelate probing of active site histidines in chymotrypsins.
  Biochemistry, 36, 6896-6905.  
8999865 S.H.Ke, K.Tachias, D.Lamba, W.Bode, and E.L.Madison (1997).
Identification of a hydrophobic exosite on tissue type plasminogen activator that modulates specificity for plasminogen.
  J Biol Chem, 272, 1811-1816.  
8631941 A.van de Locht, M.T.Stubbs, M.Bauer, and W.Bode (1996).
Crystallographic evidence that the F2 kringle catalytic domain linker of prothrombin does not cover the fibrinogen recognition exosite.
  J Biol Chem, 271, 3413-3416.  
8780512 J.L.Markley, and W.M.Westler (1996).
Protonation-state dependence of hydrogen bond strengths and exchange rates in a serine protease catalytic triad: bovine chymotrypsinogen A.
  Biochemistry, 35, 11092-11097.  
8916892 J.N.Liu, W.Tang, Z.Y.Sun, W.Kung, R.Pannell, P.Sarmientos, and V.Gurewich (1996).
A site-directed mutagenesis of pro-urokinase which substantially reduces its intrinsic activity.
  Biochemistry, 35, 14070-14076.  
8910515 K.Tachias, and E.L.Madison (1996).
Converting tissue-type plasminogen activator into a zymogen.
  J Biol Chem, 271, 28749-28752.  
  7556081 F.X.Gomis-Rüth, M.Gómez, W.Bode, R.Huber, and F.X.Avilés (1995).
The three-dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrypsinogen C.
  EMBO J, 14, 4387-4394.
PDB code: 1pyt
7568220 H.Brandstetter, M.Bauer, R.Huber, P.Lollar, and W.Bode (1995).
X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B.
  Proc Natl Acad Sci U S A, 92, 9796-9800.
PDB code: 1pfx
8534804 J.Antosiewicz (1995).
Computation of the dipole moments of proteins.
  Biophys J, 69, 1344-1354.  
7479920 K.Griebenow, and A.M.Klibanov (1995).
Lyophilization-induced reversible changes in the secondary structure of proteins.
  Proc Natl Acad Sci U S A, 92, 10969-10976.  
7559505 L.Strandberg, and E.L.Madison (1995).
Variants of tissue-type plasminogen activator with substantially enhanced response and selectivity toward fibrin co-factors.
  J Biol Chem, 270, 23444-23449.  
8747432 N.Poklar, G.Vesnaver, and S.Lapanje (1995).
Thermodynamics of denaturation of alpha-chymotrypsinogen A in aqueous urea and alkylurea solutions.
  J Protein Chem, 14, 709-719.  
8599637 X.Z.Zhou (1995).
Calculation of translational friction and intrinsic viscosity. II. Application to globular proteins.
  Biophys J, 69, 2298-2303.  
  8003977 C.L.Fisher, J.S.Greengard, and J.H.Griffin (1994).
Models of the serine protease domain of the human antithrombotic plasma factor activated protein C and its zymogen.
  Protein Sci, 3, 588-599.
PDB codes: 1pcu 2pct
  8168476 D.Pignol, C.Gaboriaud, T.Michon, B.Kerfelec, C.Chapus, and J.C.Fontecilla-Camps (1994).
Crystal structure of bovine procarboxypeptidase A-S6 subunit III, a highly structured truncated zymogen E.
  EMBO J, 13, 1763-1771.
PDB code: 1fon
8086641 D.X.Hou, Y.Wang, H.Yamashita, S.Okamoto, K.Yokoyama, E.Soeda, and A.Sarai (1994).
Evolutionary conservation of chymotrypsinogen gene: genomic analysis and protein modeling.
  Jpn J Hum Genet, 39, 235-242.  
  7756983 J.Vijayalakshmi, K.P.Padmanabhan, K.G.Mann, and A.Tulinsky (1994).
The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin.
  Protein Sci, 3, 2254-2271.
PDB codes: 1hag 1hah 1hai
7712286 M.T.Stubbs, and W.Bode (1994).
Coagulation factors and their inhibitors.
  Curr Opin Struct Biol, 4, 823-832.  
7803238 T.Miyata, K.Kuze, T.Matsusue, H.Komooka, K.Kamiya, H.Umeyama, A.Matsui, H.Kato, and A.Yoshioka (1994).
Factor IX Bm Kiryu: a Val-313-to-Asp substitution in the catalytic domain results in loss of function due to a conformational change of the surface loop: evidence obtained by chimaeric modelling.
  Br J Haematol, 88, 156-165.  
  8137810 W.Bode, P.Reinemer, R.Huber, T.Kleine, S.Schnierer, and H.Tschesche (1994).
The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity.
  EMBO J, 13, 1263-1269.
PDB code: 1jap
  8401208 B.Bax, M.Blaber, G.Ferguson, M.J.Sternberg, and P.H.Walls (1993).
Prediction of the three-dimensional structures of the nerve growth factor and epidermal growth factor binding proteins (kallikreins) and an hypothetical structure of the high molecular weight complex of epidermal growth factor with its binding protein.
  Protein Sci, 2, 1229-1241.  
8389462 D.R.Knighton, D.L.Cadena, J.Zheng, L.F.Ten Eyck, S.S.Taylor, J.M.Sowadski, and G.N.Gill (1993).
Structural features that specify tyrosine kinase activity deduced from homology modeling of the epidermal growth factor receptor.
  Proc Natl Acad Sci U S A, 90, 5001-5005.  
8451241 N.Vtyurin (1993).
The role of local tight packing of hydrophobic groups in beta-structure.
  Proteins, 15, 62-70.  
1438182 S.J.Prestrelski, D.M.Byler, and M.N.Liebman (1992).
Generation of a substructure library for the description and classification of protein secondary structure. II. Application to spectra-structure correlations in Fourier transform infrared spectroscopy.
  Proteins, 14, 440-450.  
  1304349 W.Bode, D.Turk, and A.Karshikov (1992).
The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.
  Protein Sci, 1, 426-471.
PDB codes: 1ai8 1aix
2027907 G.Vermunicht, N.Boens, and F.C.de Schryver (1991).
Global analysis of the time-resolved fluorescence of alpha- chymotrypsinogen A and alpha-chymotrypsin powders as a function of hydration.
  Photochem Photobiol, 53, 57-63.  
1799460 P.Ascenzi, P.Aducci, G.Amiconi, A.Ballio, A.Guaragna, E.Menegatti, H.P.Schnebli, and M.Bolognesi (1991).
Binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to serine (pro)enzymes: a comparative thermodynamic study.
  J Mol Recognit, 4, 113-119.  
2381905 J.Greer (1990).
Comparative modeling methods: application to the family of the mammalian serine proteases.
  Proteins, 7, 317-334.  
  2583108 W.Bode, I.Mayr, U.Baumann, R.Huber, S.R.Stone, and J.Hofsteenge (1989).
The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment.
  EMBO J, 8, 3467-3475.
PDB code: 1ppb
3273224 P.Ascenzi, M.Coletta, G.Amiconi, M.Bolognesi, M.Guarneri, and E.Menegatti (1988).
Zymogen activation: effect of peptides sequentially related to the bovine beta-trypsin N-terminus on Kazal inhibitor and benzamidine binding to bovine trypsinogen.
  J Mol Recognit, 1, 130-137.  
3054871 P.Dauber-Osguthorpe, V.A.Roberts, D.J.Osguthorpe, J.Wolff, M.Genest, and A.T.Hagler (1988).
Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system.
  Proteins, 4, 31-47.  
3282505 T.E.Creighton (1988).
Disulphide bonds and protein stability.
  Bioessays, 8, 57-63.  
3520555 A.Warshel, and F.Sussman (1986).
Toward computer-aided site-directed mutagenesis of enzymes.
  Proc Natl Acad Sci U S A, 83, 3806-3810.  
3533969 H.Neurath (1986).
The versatility of proteolytic enzymes.
  J Cell Biochem, 32, 35-49.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.