PDBsum entry 2cf2

Go to PDB code: 
protein links
Transferase PDB id
Protein chains
406 a.a.* *
304 a.a.* *
342 a.a.* *
295 a.a.* *
226 a.a.* *
* Residue conservation analysis
* C-alpha coords only
PDB id:
Name: Transferase
Title: Architecture of mammalian fatty acid synthase
Structure: Fatty acid synthase, ks domain. Chain: a, j. Fatty acid synthase, mat domain. Chain: b, k. Fatty acid synthase, dh domain. Chain: c, l. Fatty acid synthase, er domain. Chain: d, m. Fatty acid synthase, kr domain.
Source: Sus scrofa. Pig. Organism_taxid: 9823. Tissue: mammary gland. Tissue: mammary gland
Biol. unit: Decamer (from PDB file)
4.30Å     R-factor:   not given    
Authors: T.Maier,S.Jenni,N.Ban
Key ref:
T.Maier et al. (2006). Architecture of mammalian fatty acid synthase at 4.5 A resolution. Science, 311, 1258-1262. PubMed id: 16513975 DOI: 10.1126/science.1123248
14-Feb-06     Release date:   07-Mar-06    

Protein chains
Pfam   ArchSchema ?
P0A953  (FABB_ECOLI) -  3-oxoacyl-[acyl-carrier-protein] synthase 1
406 a.a.
406 a.a.*
Protein chains
No UniProt id for this chain
Struc: 304 a.a.
Protein chains
No UniProt id for this chain
Struc: 342 a.a.
Protein chains
No UniProt id for this chain
Struc: 295 a.a.
Protein chains
No UniProt id for this chain
Struc: 226 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, J: E.C.  - Beta-ketoacyl-[acyl-carrier-protein] synthase I.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] = 3-oxoacyl- [acyl-carrier-protein] + CO2 + [acyl-carrier-protein]
+ malonyl-[acyl-carrier-protein]
= 3-oxoacyl- [acyl-carrier-protein]
+ CO(2)
+ [acyl-carrier-protein]
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   2 terms 
  Biological process     metabolic process   6 terms 
  Biochemical function     catalytic activity     7 terms  


DOI no: 10.1126/science.1123248 Science 311:1258-1262 (2006)
PubMed id: 16513975  
Architecture of mammalian fatty acid synthase at 4.5 A resolution.
T.Maier, S.Jenni, N.Ban.
The homodimeric mammalian fatty acid synthase is one of the most complex cellular multienzymes, in that each 270-kilodalton polypeptide chain carries all seven functional domains required for fatty acid synthesis. We have calculated a 4.5 angstrom-resolution x-ray crystallographic map of porcine fatty acid synthase, highly homologous to the human multienzyme, and placed homologous template structures of all individual catalytic domains responsible for the cyclic elongation of fatty acid chains into the electron density. The positioning of domains reveals the complex architecture of the multienzyme forming an intertwined dimer with two lateral semicircular reaction chambers, each containing a full set of catalytic domains required for fatty acid elongation. Large distances between active sites and conformational differences between the reaction chambers demonstrate that mobility of the acyl carrier protein and general flexibility of the multienzyme must accompany handover of the reaction intermediates during the reaction cycle.
  Selected figure(s)  
Figure 4.
Fig. 4. Active sites and reaction chamber. (A) Front view of FAS with ribbon representations of fitted domains colored as in Fig. 1. The overall shape is indicated by the outline of electron density; gray and blue colors of the outline mark the nonmodeled KS/MAT interconnection and suggested ACP/TE location, respectively. The positions of active sites in the two reaction chambers are indicated by solid white and blue spheres. Hollow spheres in domain colors that surround the active sites denote the length of the phosphopantheteine arm, reflecting how close ACP has to approach the individual domains during the catalytic cycle. The active sites are connected in order of the reaction sequence with distances between the active sites indicated for the left reaction chamber. (B) Side view into one reaction chamber as indicated by a white arrow in (A); for clarity, only surface representations of the fitted domains are shown. Active sites of fitted domains of one reaction chamber are indicated by a color gradient to white on the respective surfaces.
Figure 5.
Fig. 5. Interdomain hinges and conformational variability. For structural comparison, the FAS dimer is superimposed onto itself by applying the transformation relating the dimer of KS domains as indicated by an arrow. As a result, the left reaction chamber is transformed onto the right one and vice versa. The original orientation is shown in red, the transformed one in yellow. (A) Only secondary structural elements of the fitted domains are shown. Largest differences are observed for the positions of the KR and MAT domains at the periphery. The approximate position of the pseudo-twofold dimer axis is indicated by an arrow. (B) Experimental electron density is schematically shown as an outline. The positions of active sites are indicated by spheres, hinges by crossed circles. The left reaction chamber is considerably narrower than the right one with a difference of distances between the KR and MAT active sites of about 15 Å as indicated for the original orientation in red.
  The above figures are reprinted by permission from the AAAs: Science (2006, 311, 1258-1262) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23201681 M.Knobloch, S.M.Braun, L.Zurkirchen, C.von Schoultz, N.Zamboni, M.J.Araúzo-Bravo, W.J.Kovacs, O.Karalay, U.Suter, R.A.Machado, M.Roccio, M.P.Lutolf, C.F.Semenkovich, and S.Jessberger (2013).
Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis.
  Nature, 493, 226-230.  
22993090 A.S.Halavaty, Y.Kim, G.Minasov, L.Shuvalova, I.Dubrovska, J.Winsor, M.Zhou, O.Onopriyenko, T.Skarina, L.Papazisi, K.Kwon, S.N.Peterson, A.Joachimiak, A.Savchenko, and W.F.Anderson (2012).
Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria.
  Acta Crystallogr D Biol Crystallogr, 68, 1359-1370.
PDB codes: 3f09 3hyk 3qmn 4jm7
20179343 B.P.Pedersen, J.P.Morth, and P.Nissen (2010).
Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+,K+-ATPase case history.
  Acta Crystallogr D Biol Crystallogr, 66, 309-313.  
20662770 D.I.Chan, and H.J.Vogel (2010).
Current understanding of fatty acid biosynthesis and the acyl carrier protein.
  Biochem J, 430, 1.  
20152156 D.L.Akey, J.R.Razelun, J.Tehranisa, D.H.Sherman, W.H.Gerwick, and J.L.Smith (2010).
Crystal structures of dehydratase domains from the curacin polyketide biosynthetic pathway.
  Structure, 18, 94.
PDB codes: 3kg6 3kg7 3kg8 3kg9
20122995 E.Furuta, H.Okuda, A.Kobayashi, and K.Watabe (2010).
Metabolic genes in cancer: their roles in tumor progression and clinical implications.
  Biochim Biophys Acta, 1805, 141-152.  
20014832 G.A.Zornetzer, J.Tanem, B.G.Fox, and J.L.Markley (2010).
The length of the bound fatty acid influences the dynamics of the acyl carrier protein and the stability of the thioester bond.
  Biochemistry, 49, 470-477.  
20607777 H.Hirakawa, and T.Nagamune (2010).
Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA.
  Chembiochem, 11, 1517-1520.  
  20706604 H.Liu, J.Y.Liu, X.Wu, and J.T.Zhang (2010).
Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker.
  Int J Biochem Mol Biol, 1, 69-89.  
19957036 J.Wang, J.Zhang, W.Wu, X.Duan, S.Wang, M.Zhang, S.Zhou, F.Mo, Y.Xu, J.Shi, and J.Wu (2010).
Evaluation of gallbladder lipid level during carcinogenesis by an infrared spectroscopic method.
  Dig Dis Sci, 55, 2670-2675.  
20696392 J.Zheng, C.A.Taylor, S.K.Piasecki, and A.T.Keatinge-Clay (2010).
Structural and functional analysis of A-type ketoreductases from the amphotericin modular polyketide synthase.
  Structure, 18, 913-922.
PDB codes: 3mjc 3mje 3mjs 3mjt 3mjv
20231485 P.Gipson, D.J.Mills, R.Wouts, M.Grininger, J.Vonck, and W.Kühlbrandt (2010).
Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy.
  Proc Natl Acad Sci U S A, 107, 9164-9169.  
20373869 R.Flavin, S.Peluso, P.L.Nguyen, and M.Loda (2010).
Fatty acid synthase as a potential therapeutic target in cancer.
  Future Oncol, 6, 551-562.  
20731893 T.Maier, M.Leibundgut, D.Boehringer, and N.Ban (2010).
Structure and function of eukaryotic fatty acid synthases.
  Q Rev Biophys, 43, 373-422.  
19636447 A.Koglin, and C.T.Walsh (2009).
Structural insights into nonribosomal peptide enzymatic assembly lines.
  Nat Prod Rep, 26, 987.  
19604473 C.Oubridge, D.A.Krummel, A.K.Leung, J.Li, and K.Nagai (2009).
Interpreting a low resolution map of human U1 snRNP using anomalous scatterers.
  Structure, 17, 930-938.  
19706691 C.Sim, and D.L.Denlinger (2009).
Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens.
  Physiol Genomics, 39, 202-209.  
19151726 E.J.Brignole, S.Smith, and F.J.Asturias (2009).
Conformational flexibility of metazoan fatty acid synthase enables catalysis.
  Nat Struct Mol Biol, 16, 190-197.  
19551180 J.L.Meier, and M.D.Burkart (2009).
The chemical biology of modular biosynthetic enzymes.
  Chem Soc Rev, 38, 2012-2045.  
19473548 L.S.Pidugu, K.Maity, K.Ramaswamy, N.Surolia, and K.Suguna (2009).
Analysis of proteins with the 'hot dog' fold: prediction of function and identification of catalytic residues of hypothetical proteins.
  BMC Struct Biol, 9, 37.  
19151923 R.P.Massengo-Tiassé, and J.E.Cronan (2009).
Diversity in enoyl-acyl carrier protein reductases.
  Cell Mol Life Sci, 66, 1507-1517.  
19362634 S.C.Tsai, and B.D.Ames (2009).
Structural enzymology of polyketide synthases.
  Methods Enzymol, 459, 17-47.  
19171964 S.Jenni, and N.Ban (2009).
Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase.
  Acta Crystallogr D Biol Crystallogr, 65, 101-111.  
19291389 T.Abe, J.Saburi, H.Hasebe, T.Nakagawa, S.Misumi, T.Nade, H.Nakajima, N.Shoji, M.Kobayashi, and E.Kobayashi (2009).
Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef.
  Biochem Genet, 47, 397-411.  
  19146481 T.J.Buchholz, T.W.Geders, F.E.Bartley, K.A.Reynolds, J.L.Smith, and D.H.Sherman (2009).
Structural basis for binding specificity between subclasses of modular polyketide synthase docking domains.
  ACS Chem Biol, 4, 41-52.
PDB code: 3f5h
19446530 Y.Cong, Q.Zhang, D.Woolford, T.Schweikardt, H.Khant, M.Dougherty, S.J.Ludtke, W.Chiu, and H.Decker (2009).
Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy.
  Structure, 17, 749-758.
PDB codes: 3ixv 3ixw
18199837 A.Miyanaga, N.Funa, T.Awakawa, and S.Horinouchi (2008).
Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.
  Proc Natl Acad Sci U S A, 105, 871-876.  
18666307 A.S.Worthington, G.H.Hur, J.L.Meier, Q.Cheng, B.S.Moore, and M.D.Burkart (2008).
Probing the compatibility of type II ketosynthase-carrier protein partners.
  Chembiochem, 9, 2096-2103.  
18583577 A.Tanovic, S.A.Samel, L.O.Essen, and M.A.Marahiel (2008).
Crystal structure of the termination module of a nonribosomal peptide synthetase.
  Science, 321, 659-663.
PDB code: 2vsq
19022183 D.H.Kwan, Y.Sun, F.Schulz, H.Hong, B.Popovic, J.C.Sim-Stark, S.F.Haydock, and P.F.Leadlay (2008).
Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases.
  Chem Biol, 15, 1231-1240.  
18809688 D.I.Chan, T.Stockner, D.P.Tieleman, and H.J.Vogel (2008).
Molecular dynamics simulations of the Apo-, Holo-, and acyl-forms of Escherichia coli acyl carrier protein.
  J Biol Chem, 283, 33620-33629.  
18704088 D.P.Frueh, H.Arthanari, A.Koglin, D.A.Vosburg, A.E.Bennett, C.T.Walsh, and G.Wagner (2008).
Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase.
  Nature, 454, 903-906.
PDB code: 2roq
18410406 F.Pankewitz, and M.Hilker (2008).
Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis.
  Biol Rev Camb Philos Soc, 83, 209-226.  
18384517 G.E.Schujman, S.Altabe, and Mendoza (2008).
A malonyl-CoA-dependent switch in the bacterial response to a dysfunction of lipid metabolism.
  Mol Microbiol, 68, 987-996.  
18772425 J.L.Smith, and D.H.Sherman (2008).
Biochemistry. An enzyme assembly line.
  Science, 321, 1304-1305.  
18305197 J.Saito, M.Yamada, T.Watanabe, M.Iida, H.Kitagawa, S.Takahata, T.Ozawa, Y.Takeuchi, and F.Ohsawa (2008).
Crystal structure of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor.
  Protein Sci, 17, 691-699.
PDB codes: 2z6i 2z6j
19016299 K.J.Weissman (2008).
Taking a closer look at fatty acid biosynthesis.
  Chembiochem, 9, 2929-2931.  
19021139 L.Betancor, M.J.Fernández, K.J.Weissman, and P.F.Leadlay (2008).
Improved catalytic activity of a purified multienzyme from a modular polyketide synthase after coexpression with Streptomyces chaperonins in Escherichia coli.
  Chembiochem, 9, 2962-2966.  
18312417 M.J.Vázquez, W.Leavens, R.Liu, B.Rodríguez, M.Read, S.Richards, D.Winegar, and J.M.Domínguez (2008).
Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the beta-ketoacyl reductase reaction.
  FEBS J, 275, 1556-1567.  
18948193 M.Leibundgut, T.Maier, S.Jenni, and N.Ban (2008).
The multienzyme architecture of eukaryotic fatty acid synthases.
  Curr Opin Struct Biol, 18, 714-725.  
  19052664 M.Marcet-Houben, M.Cabré, J.L.Paternáin, and A.Romeu (2008).
Phylogenetic analysis of homologous fatty acid synthase and polyketide synthase involved in aflatoxin biosynthesis.
  Bioinformation, 3, 33-40.  
18725634 P.Johansson, B.Wiltschi, P.Kumari, B.Kessler, C.Vonrhein, J.Vonck, D.Oesterhelt, and M.Grininger (2008).
Inhibition of the fungal fatty acid synthase type I multienzyme complex.
  Proc Natl Acad Sci U S A, 105, 12803-12808.
PDB code: 2vkz
18411195 R.Lupu, R.Colomer, and J.A.Menéndez (2008).
An easy, rapid and objective mathematical method to identify fatty acid synthase (oncogenic antigen-519) modulators with potential anticancer value.
  Clin Transl Oncol, 10, 219-226.  
18613748 T.Chopra, S.Banerjee, S.Gupta, G.Yadav, S.Anand, A.Surolia, R.P.Roy, D.Mohanty, and R.S.Gokhale (2008).
Novel intermolecular iterative mechanism for biosynthesis of mycoketide catalyzed by a bimodular polyketide synthase.
  PLoS Biol, 6, e163.  
18772430 T.Maier, M.Leibundgut, and N.Ban (2008).
The crystal structure of a mammalian fatty acid synthase.
  Science, 321, 1315-1322.
PDB codes: 2vz8 2vz9
18412189 T.Moriguchi, Y.Ebizuka, and I.Fujii (2008).
Domain-domain interactions in the iterative type I polyketide synthase ATX from Aspergillus terreus.
  Chembiochem, 9, 1207-1212.  
17902053 T.Puig, A.Vázquez-Martín, J.Relat, J.Pétriz, J.A.Menéndez, R.Porta, G.Casals, P.F.Marrero, D.Haro, J.Brunet, and R.Colomer (2008).
Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75.
  Breast Cancer Res Treat, 109, 471-479.  
17653358 A.C.Mercer, and M.D.Burkart (2007).
The ubiquitous carrier protein--a window to metabolite biosynthesis.
  Nat Prod Rep, 24, 750-773.  
17719489 A.T.Keatinge-Clay (2007).
A tylosin ketoreductase reveals how chirality is determined in polyketides.
  Chem Biol, 14, 898-908.
PDB code: 2z5l
17576425 B.Wilkinson, and J.Micklefield (2007).
Mining and engineering natural-product biosynthetic pathways.
  Nat Chem Biol, 3, 379-386.  
17419733 C.D.Richter, D.A.Stanmore, R.N.Miguel, M.C.Moncrieffe, L.Tran, S.Brewerton, F.Meersman, R.W.Broadhurst, and K.J.Weissman (2007).
Autonomous folding of interdomain regions of a modular polyketide synthase.
  FEBS J, 274, 2196-2209.  
17328673 C.Khosla, Y.Tang, A.Y.Chen, N.A.Schnarr, and D.E.Cane (2007).
Structure and mechanism of the 6-deoxyerythronolide B synthase.
  Annu Rev Biochem, 76, 195-221.  
17618296 C.W.Pemble, L.C.Johnson, S.J.Kridel, and W.T.Lowther (2007).
Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat.
  Nat Struct Mol Biol, 14, 704-709.
PDB code: 2px6
18059524 D.M.Byers, and H.Gong (2007).
Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family.
  Biochem Cell Biol, 85, 649-662.  
18022563 G.Bunkoczi, S.Pasta, A.Joshi, X.Wu, K.L.Kavanagh, S.Smith, and U.Oppermann (2007).
Mechanism and substrate recognition of human holo ACP synthase.
  Chem Biol, 14, 1243-1253.
PDB codes: 2byd 2c43 2cg5
17553731 H.G.Menzella, and C.D.Reeves (2007).
Combinatorial biosynthesis for drug development.
  Curr Opin Microbiol, 10, 238-245.  
17882277 J.A.Menendez, and R.Lupu (2007).
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis.
  Nat Rev Cancer, 7, 763-777.  
17719493 J.D.Kittendorf, B.J.Beck, T.J.Buchholz, W.Seufert, and D.H.Sherman (2007).
Interrogating the molecular basis for multiple macrolactone ring formation by the pikromycin polyketide synthase.
  Chem Biol, 14, 944-954.  
17600834 K.Raman, P.Rajagopalan, and N.Chandra (2007).
Hallmarks of mycolic acid biosynthesis: a comparative genomics study.
  Proteins, 69, 358-368.  
17991863 L.Gu, T.W.Geders, B.Wang, W.H.Gerwick, K.Håkansson, J.L.Smith, and D.H.Sherman (2007).
GNAT-like strategy for polyketide chain initiation.
  Science, 318, 970-974.
PDB codes: 2ree 2ref
18045420 L.Yu, W.Zhang, T.Liu, X.Wang, J.Peng, S.Li, and Q.Jin (2007).
Global gene expression of Trichophyton rubrum in response to PH11B, a novel fatty acid synthase inhibitor.
  J Appl Microbiol, 103, 2346-2352.  
18033580 N.Dixon, L.S.Wong, T.H.Geerlings, and J.Micklefield (2007).
Cellular targets of natural products.
  Nat Prod Rep, 24, 1288-1310.  
17190806 P.D.Straight, M.A.Fischbach, C.T.Walsh, D.Z.Rudner, and R.Kolter (2007).
A singular enzymatic megacomplex from Bacillus subtilis.
  Proc Natl Acad Sci U S A, 104, 305-310.  
17581644 R.J.Cox (2007).
Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets.
  Org Biomol Chem, 5, 2010-2026.  
17935970 R.S.Gokhale, R.Sankaranarayanan, and D.Mohanty (2007).
Versatility of polyketide synthases in generating metabolic diversity.
  Curr Opin Struct Biol, 17, 736-743.  
17970640 S.J.Kridel, W.T.Lowther, and C.W.Pemble (2007).
Fatty acid synthase inhibitors: new directions for oncology.
  Expert Opin Investig Drugs, 16, 1817-1829.  
17466016 S.M.Ma, and Y.Tang (2007).
Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB.
  FEBS J, 274, 2854-2864.  
18096506 S.Pasta, A.Witkowski, A.K.Joshi, and S.Smith (2007).
Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase.
  Chem Biol, 14, 1377-1385.  
17485508 S.Sharma, S.K.Sharma, R.Modak, K.Karmodiya, N.Surolia, and A.Surolia (2007).
Mass spectrometry-based systems approach for identification of inhibitors of Plasmodium falciparum fatty acid synthase.
  Antimicrob Agents Chemother, 51, 2552-2558.  
17898897 S.Smith, and S.C.Tsai (2007).
The type I fatty acid and polyketide synthases: a tale of two megasynthases.
  Nat Prod Rep, 24, 1041-1072.  
17335097 Y.Liu, and S.D.Bruner (2007).
Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases.
  Chembiochem, 8, 617-621.  
16632247 C.A.Townsend, J.M.Crawford, and T.Bililign (2006).
New images evoke FAScinating questions.
  Chem Biol, 13, 349-351.  
17046237 J.D.Kittendorf, and D.H.Sherman (2006).
Developing tools for engineering hybrid polyketide synthetic pathways.
  Curr Opin Biotechnol, 17, 597-605.  
16619020 J.E.Cronan (2006).
Remarkable structural variation within fatty acid megasynthases.
  Nat Chem Biol, 2, 232-234.  
16710331 J.J.Kohler (2006).
A century at the chemistry-biology interface.
  Nat Chem Biol, 2, 288-292.  
17071746 J.M.Crawford, B.C.Dancy, E.A.Hill, D.W.Udwary, and C.A.Townsend (2006).
Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase.
  Proc Natl Acad Sci U S A, 103, 16728-16733.  
16920791 J.Mazumdar, E.H Wilson, K.Masek, C.A Hunter, and B.Striepen (2006).
Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii.
  Proc Natl Acad Sci U S A, 103, 13192-13197.  
16815901 L.M.Hicks, C.J.Balibar, C.T.Walsh, N.L.Kelleher, and N.J.Hillson (2006).
Probing intra- versus interchain kinetic preferences of L-Thr acylation on dimeric VibF with mass spectrometry.
  Biophys J, 91, 2609-2619.  
16906151 M.B.Austin, T.Saito, M.E.Bowman, S.Haydock, A.Kato, B.S.Moore, R.R.Kay, and J.P.Noel (2006).
Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.
  Nat Chem Biol, 2, 494-502.
PDB code: 2h84
16963641 P.Johansson, A.Castell, T.A.Jones, and K.Bäckbro (2006).
Structure and function of Rv0130, a conserved hypothetical protein from Mycobacterium tuberculosis.
  Protein Sci, 15, 2300-2309.
PDB code: 2c2i
17004275 T.Moriguchi, Y.Ebizuka, and I.Fujii (2006).
Analysis of subunit interactions in the iterative type I polyketide synthase ATX from Aspergillus terreus.
  Chembiochem, 7, 1869-1874.  
16844787 Y.Tang, C.Y.Kim, I.I.Mathews, D.E.Cane, and C.Khosla (2006).
The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase.
  Proc Natl Acad Sci U S A, 103, 11124-11129.
PDB code: 2hg4
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.