PDBsum entry 2c73

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
Protein chain
499 a.a. *
Waters ×315
* Residue conservation analysis
PDB id:
Name: Oxidoreductase
Title: Functional role of the aromatic cage in human monoamine oxidase b: structures and catalytic properties of tyr435 mutant proteins
Structure: Amine oxidase (flavin-containing) b. Chain: a, b. Synonym: monoamine oxidase b, mao-b. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: pichia pastoris. Expression_system_taxid: 4922
Biol. unit: Dimer (from PDB file)
2.20Å     R-factor:   0.236     R-free:   0.279
Authors: M.Li,C.Binda,A.Mattevi,D.E.Edmondson
Key ref:
M.Li et al. (2006). Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins. Biochemistry, 45, 4775-4784. PubMed id: 16605246 DOI: 10.1021/bi051847g
17-Nov-05     Release date:   19-Apr-06    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P27338  (AOFB_HUMAN) -  Amine oxidase [flavin-containing] B
520 a.a.
499 a.a.*
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.  - Monoamine oxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RCH2NHR' + H2O + O2 = RCHO + R'NH2 + H2O2
+ H(2)O
+ O(2)
+ R'NH(2)
+ H(2)O(2)
      Cofactor: FAD
Bound ligand (Het Group name = FAD) corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   6 terms 
  Biological process     small molecule metabolic process   14 terms 
  Biochemical function     electron carrier activity     5 terms  


DOI no: 10.1021/bi051847g Biochemistry 45:4775-4784 (2006)
PubMed id: 16605246  
Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins.
M.Li, C.Binda, A.Mattevi, D.E.Edmondson.
Current structural results of several flavin-dependent amine oxidizing enzymes including human monoamine oxidases A and B (MAO A and MAO B) show aromatic amino acid residues oriented approximately perpendicular to the flavin ring, suggesting a functional role in catalysis. In the case of human MAO B, two tyrosyl residues (Y398 and Y435) are found in the substrate binding site on the re face of the covalent flavin ring [Binda et al. (2002) J. Biol. Chem. 277, 23973-23976]. To probe the functional significance of this structure, Tyr435 in MAO B was mutated with the amino acids Phe, His, Leu, or Trp, the mutant proteins expressed in Pichia pastoris, and purified to homogeneity. Each mutant protein contains covalent FAD and exhibits a high level of catalytic functionality. No major alterations in active site structures are detected on comparison of their respective crystal structures with that of WT enzyme. The relative k(cat)/K(m) values for each mutant enzyme show Y435 > Y435F = Y435L = Y435H > Y435W. A similar behavior is also observed with the membrane-bound forms of MAO A and MAO B (MAO A Y444 mutant enzymes are found to be unstable on membrane extraction). p-Nitrobenzylamine is found to be a poor substrate while p-nitrophenethylamine is found to be a good substrate for all WT and mutant forms of MAO B. Analysis of these kinetic and structural data suggests the function of the "aromatic cage" in MAO to include a steric role in substrate binding and access to the flavin coenzyme and to increase the nucleophilicity of the substrate amine moiety. These results are consistent with a proposed polar nucleophilic mechanism for catalytic amine oxidation.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21383134 G.Kachalova, K.Decker, A.Holt, and H.D.Bartunik (2011).
Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family.
  Proc Natl Acad Sci U S A, 108, 4800-4805.
PDB code: 3ng7
20079438 B.K.Arslan, and D.E.Edmondson (2010).
Expression of zebrafish (Danio rerio) monoamine oxidase (MAO) in Pichia pastoris: purification and comparison with human MAO A and MAO B.
  Protein Expr Purif, 70, 290-297.  
20480485 R.V.Dunn, A.W.Munro, N.J.Turner, S.E.Rigby, and N.S.Scrutton (2010).
Tyrosyl radical formation and propagation in flavin dependent monoamine oxidases.
  Chembiochem, 11, 1228-1231.  
19371079 D.E.Edmondson, C.Binda, J.Wang, A.K.Upadhyay, and A.Mattevi (2009).
Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases.
  Biochemistry, 48, 4220-4230.  
19624733 F.Forneris, E.Battaglioli, A.Mattevi, and C.Binda (2009).
New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin.
  FEBS J, 276, 4304-4312.  
19645722 J.Wang, J.Harris, D.D.Mousseau, and D.E.Edmondson (2009).
Mutagenic probes of the role of Ser209 on the cavity shaping loop of human monoamine oxidase A.
  FEBS J, 276, 4569-4581.  
18424170 A.K.Upadhyay, and D.E.Edmondson (2008).
Characterization of detergent purified recombinant rat liver monoamine oxidase B expressed in Pichia pastoris.
  Protein Expr Purif, 59, 349-356.  
19053775 E.M.Milczek, D.Bonivento, C.Binda, A.Mattevi, I.A.McDonald, and D.E.Edmondson (2008).
Structural and mechanistic studies of mofegiline inhibition of recombinant human monoamine oxidase B.
  J Med Chem, 51, 8019-8026.
PDB code: 2vz2
18183391 E.W.van Hellemond, M.van Dijk, D.P.Heuts, D.B.Janssen, and M.W.Fraaije (2008).
Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540.
  Appl Microbiol Biotechnol, 78, 455-463.  
18417467 K.Ida, M.Kurabayashi, M.Suguro, Y.Hiruma, T.Hikima, M.Yamomoto, and H.Suzuki (2008).
Structural basis of proteolytic activation of L-phenylalanine oxidase from Pseudomonas sp. P-501.
  J Biol Chem, 283, 16584-16590.
PDB codes: 2yr4 2yr5 2yr6
18279389 M.A.Musumeci, A.K.Arakaki, D.V.Rial, D.L.Catalano-Dupuy, and E.A.Ceccarelli (2008).
Modulation of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid volume around the catalytic site.
  FEBS J, 275, 1350-1366.  
18573102 R.V.Dunn, K.R.Marshall, A.W.Munro, and N.S.Scrutton (2008).
The pH dependence of kinetic isotope effects in monoamine oxidase A indicates stabilization of the neutral amine in the enzyme-substrate complex.
  FEBS J, 275, 3850-3858.  
18640844 S.Hruschka, T.C.Rosen, S.Yoshida, K.L.Kirk, R.Fröhlich, B.Wibbeling, and G.Haufe (2008).
Fluorinated phenylcyclopropylamines. Part 5: Effects of electron-withdrawing or -donating aryl substituents on the inhibition of monoamine oxidases A and B by 2-aryl-2-fluoro-cyclopropylamines.
  Bioorg Med Chem, 16, 7148-7166.  
17573034 D.E.Edmondson, C.Binda, and A.Mattevi (2007).
Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B.
  Arch Biochem Biophys, 464, 269-276.  
17401533 K.Yelekçi, O.Karahan, and M.Toprakçi (2007).
Docking of novel reversible monoamine oxidase-B inhibitors: efficient prediction of ligand binding sites and estimation of inhibitors thermodynamic properties.
  J Neural Transm, 114, 725-732.  
17401536 M.A.Akyüz, S.S.Erdem, and D.E.Edmondson (2007).
The aromatic cage in the active site of monoamine oxidase B: effect on the structural and electronic properties of bound benzylamine and p-nitrobenzylamine.
  J Neural Transm, 114, 693-698.  
  19890477 P.F.Fitzpatrick (2007).
Insights into the mechanisms of flavoprotein oxidases from kinetic isotope effects.
  J Labelled Comp Radiopharm, 50, 1016-1025.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.