spacer
spacer

PDBsum entry 2c4c

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transport PDB id
2c4c

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
476 a.a. *
Ligands
FAD ×2
Metals
_CL ×2
Waters ×40
* Residue conservation analysis
PDB id:
2c4c
Name: Transport
Title: Crystal structure of the NADPH-treated monooxygenase domain of mical
Structure: Nedd9-interacting protein with calponin homology and lim domains. Chain: a, b. Synonym: mical, molecule interacting with casl protein 1. Engineered: yes
Source: Mus musculus. Mouse. Organism_taxid: 10090. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.90Å     R-factor:   0.246     R-free:   0.294
Authors: C.Siebold,N.Berrow,T.S.Walter,K.Harlos,R.J.Owens,J.R.Terman, D.I.Stuart,A.L.Kolodkin,R.J.Pasterkamp,E.Y.Jones
Key ref:
C.Siebold et al. (2005). High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a multidomain flavoenzyme-signaling molecule. Proc Natl Acad Sci U S A, 102, 16836-16841. PubMed id: 16275925 DOI: 10.1073/pnas.0504997102
Date:
18-Oct-05     Release date:   26-Oct-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q8VDP3  (MICA1_MOUSE) -  [F-actin]-monooxygenase MICAL1 from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1048 a.a.
476 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.1.14.13.225  - F-actin monooxygenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-methionyl-[F-actin] + NADPH + O2 + H+ = L-methionyl-(R)-S-oxide- [F-actin] + NADP+ + H2O
L-methionyl-[F-actin]
+ NADPH
+
O2
Bound ligand (Het Group name = FAD)
matches with 71.19% similarity
+ H(+)
= L-methionyl-(R)-S-oxide- [F-actin]
+ NADP(+)
+ H2O
   Enzyme class 3: E.C.1.6.3.1  - NAD(P)H oxidase (H2O2-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. NADPH + O2 + H+ = H2O2 + NADP+
2. NADH + O2 + H+ = H2O2 + NAD+
NADPH
+ O2
+ H(+)
= H2O2
+ NADP(+)
NADH
+ O2
+ H(+)
= H2O2
+ NAD(+)
      Cofactor: Ca(2+); FAD; Heme
Ca(2+)
FAD
Bound ligand (Het Group name = FAD) corresponds exactly
Heme
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.0504997102 Proc Natl Acad Sci U S A 102:16836-16841 (2005)
PubMed id: 16275925  
 
 
High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a multidomain flavoenzyme-signaling molecule.
C.Siebold, N.Berrow, T.S.Walter, K.Harlos, R.J.Owens, D.I.Stuart, J.R.Terman, A.L.Kolodkin, R.J.Pasterkamp, E.Y.Jones.
 
  ABSTRACT  
 
Semaphorins are extracellular cell guidance cues that govern cytoskeletal dynamics during neuronal and vascular development. MICAL (molecule interacting with CasL) is a multidomain cytosolic protein with a putative flavoprotein monooxygenase (MO) region required for semaphorin-plexin repulsive axon guidance. Here, we report the 1.45-A resolution crystal structure of the FAD-containing MO domain of mouse MICAL-1 (residues 1-489). The topology most closely resembles that of the NADPH-dependent flavoenzyme p-hydroxybenzoate hydroxylase (PHBH). Comparison of structures before and after reaction with NADPH reveals that, as in PHBH, the flavin ring can switch between two discrete positions. In contrast with other MOs, this conformational switch is coupled with the opening of a channel to the active site, suggestive of a protein substrate. In support of this hypothesis, distinctive structural features highlight putative protein-binding sites in suitable proximity to the active site entrance. The unusual juxtaposition of this N-terminal MO (hydroxylase) activity with the characteristics of a multiprotein-binding scaffold exhibited by the C-terminal portion of the MICALs represents a unique combination of functionality to mediate signaling.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. Schematic representation of the FAD-apoprotein interactions in mMICAL[489]. View on the si face of the flavin with the FAD and interacting residues depicted as sticks [N, blue; O, red; P, violet; S, yellow; C (protein), orange; C (FAD), gray] and water molecules shown as cyan spheres. H bonds are shown in green with lengths in Å. Red "eyelashes" show hydrophobic interactions.
Figure 4.
Fig. 4. Comparison of the reduced and oxidized forms of mMICAL[489].(A and B) Superposition of the two forms. The FAD molecules are drawn as balls and sticks (carbons of oxidized mMICAL[489], cyan; carbons of reduced mMICAL[489], orange). The main chain of the oxidized form is depicted as a ribbon. B is rotated by 90° about the x axis relative to A. (C and D) Coordination of the isoalloxazine ring in the oxidized (C) and reduced (D) forms viewed from a common orientation. The isoalloxazine ring and selected residues are depicted as sticks (orange, carbon of reduced isoalloxazine; gray, protein carbon), waters are shown as spheres, and H bonds are shown as yellow dashes.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20148037 R.J.Hung, U.Yazdani, J.Yoon, H.Wu, T.Yang, N.Gupta, Z.Huang, W.J.van Berkel, and J.R.Terman (2010).
Mical links semaphorins to F-actin disassembly.
  Nature, 463, 823-827.  
19459938 F.Forneris, R.Orru, D.Bonivento, L.R.Chiarelli, and A.Mattevi (2009).
ThermoFAD, a Thermofluor-adapted flavin ad hoc detection system for protein folding and ligand binding.
  FEBS J, 276, 2833-2840.  
19620709 K.Prochazkova, L.A.Shuvalova, G.Minasov, Z.Voburka, W.F.Anderson, and K.J.Satchell (2009).
Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites.
  J Biol Chem, 284, 26557-26568.
PDB code: 3fzy
19762474 Q.Sun, H.Zhou, N.O.Binmadi, and J.R.Basile (2009).
Hypoxia-inducible factor-1-mediated regulation of semaphorin 4D affects tumor growth and vascularity.
  J Biol Chem, 284, 32066-32074.  
19243237 T.Senda, M.Senda, S.Kimura, and T.Ishida (2009).
Redox control of protein conformation in flavoproteins.
  Antioxid Redox Signal, 11, 1741-1766.  
18305261 E.F.Schmidt, S.O.Shim, and S.M.Strittmatter (2008).
Release of MICAL autoinhibition by semaphorin-plexin signaling promotes interaction with collapsin response mediator protein.
  J Neurosci, 28, 2287-2297.  
  17607942 E.F.Schmidt, and S.M.Strittmatter (2007).
The CRMP family of proteins and their role in Sema3A signaling.
  Adv Exp Med Biol, 600, 1.  
17275397 V.Joosten, and W.J.van Berkel (2007).
Flavoenzymes.
  Curr Opin Chem Biol, 11, 195-202.  
17001090 A.Geerlof, J.Brown, B.Coutard, M.P.Egloff, F.J.Enguita, M.J.Fogg, R.J.Gilbert, M.R.Groves, A.Haouz, J.E.Nettleship, P.Nordlund, R.J.Owens, M.Ruff, S.Sainsbury, D.I.Svergun, and M.Wilmanns (2006).
The impact of protein characterization in structural proteomics.
  Acta Crystallogr D Biol Crystallogr, 62, 1125-1136.  
17043746 H.Sun, H.Dai, J.Zhang, X.Jin, S.Xiong, J.Xu, J.Wu, and Y.Shi (2006).
Solution structure of calponin homology domain of Human MICAL-1.
  J Biomol NMR, 36, 295-300.
PDB code: 2dk9
17001104 K.Au, N.S.Berrow, E.Blagova, I.W.Boucher, M.P.Boyle, J.A.Brannigan, L.G.Carter, T.Dierks, G.Folkers, R.Grenha, K.Harlos, R.Kaptein, A.K.Kalliomaa, V.M.Levdikov, C.Meier, N.Milioti, O.Moroz, A.Müller, R.J.Owens, N.Rzechorzek, S.Sainsbury, D.I.Stuart, T.S.Walter, D.G.Waterman, A.J.Wilkinson, K.S.Wilson, N.Zaccai, R.M.Esnouf, and M.J.Fogg (2006).
Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis.
  Acta Crystallogr D Biol Crystallogr, 62, 1267-1275.  
17001097 L.Banci, I.Bertini, S.Cusack, R.N.de Jong, U.Heinemann, E.Y.Jones, F.Kozielski, K.Maskos, A.Messerschmidt, R.Owens, A.Perrakis, A.Poterszman, G.Schneider, C.Siebold, I.Silman, T.Sixma, G.Stewart-Jones, J.L.Sussman, J.C.Thierry, and D.Moras (2006).
First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value.
  Acta Crystallogr D Biol Crystallogr, 62, 1208-1217.  
17070680 L.De Colibus, and A.Mattevi (2006).
New frontiers in structural flavoenzymology.
  Curr Opin Struct Biol, 16, 722-728.  
17001096 M.J.Fogg, P.Alzari, M.Bahar, I.Bertini, J.M.Betton, W.P.Burmeister, C.Cambillau, B.Canard, M.A.Corrondo, M.Carrondo, M.Coll, S.Daenke, O.Dym, M.P.Egloff, F.J.Enguita, A.Geerlof, A.Haouz, T.A.Jones, Q.Ma, S.N.Manicka, M.Migliardi, P.Nordlund, R.J.Owens, Y.Peleg, G.Schneider, R.Schnell, D.I.Stuart, N.Tarbouriech, T.Unge, A.J.Wilkinson, M.Wilmanns, K.S.Wilson, O.Zimhony, and J.M.Grimes (2006).
Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens.
  Acta Crystallogr D Biol Crystallogr, 62, 1196-1207.  
17001098 N.S.Berrow, K.Büssow, B.Coutard, J.Diprose, M.Ekberg, G.E.Folkers, N.Levy, V.Lieu, R.J.Owens, Y.Peleg, C.Pinaglia, S.Quevillon-Cheruel, L.Salim, C.Scheich, R.Vincentelli, and D.Busso (2006).
Recombinant protein expression and solubility screening in Escherichia coli: a comparative study.
  Acta Crystallogr D Biol Crystallogr, 62, 1218-1226.  
17001095 S.Albeck, P.Alzari, C.Andreini, L.Banci, I.M.Berry, I.Bertini, C.Cambillau, B.Canard, L.Carter, S.X.Cohen, J.M.Diprose, O.Dym, R.M.Esnouf, C.Felder, F.Ferron, F.Guillemot, R.Hamer, M.Ben Jelloul, R.A.Laskowski, T.Laurent, S.Longhi, R.Lopez, C.Luchinat, H.Malet, T.Mochel, R.J.Morris, L.Moulinier, T.Oinn, A.Pajon, Y.Peleg, A.Perrakis, O.Poch, J.Prilusky, A.Rachedi, R.Ripp, A.Rosato, I.Silman, D.I.Stuart, J.L.Sussman, J.C.Thierry, J.D.Thompson, J.M.Thornton, T.Unger, B.Vaughan, W.Vranken, J.D.Watson, G.Whamond, and K.Henrick (2006).
SPINE bioinformatics and data-management aspects of high-throughput structural biology.
  Acta Crystallogr D Biol Crystallogr, 62, 1184-1195.  
17098187 T.S.Walter, C.Meier, R.Assenberg, K.F.Au, J.Ren, A.Verma, J.E.Nettleship, R.J.Owens, D.I.Stuart, and J.M.Grimes (2006).
Lysine methylation as a routine rescue strategy for protein crystallization.
  Structure, 14, 1617-1622.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer