PDBsum entry 2ao6

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transcription PDB id
Protein chains
242 a.a. *
11 a.a. *
Waters ×152
* Residue conservation analysis
PDB id:
Name: Transcription
Title: Crystal structure of the human androgen receptor ligand binding domain bound with tif2(iii) 740-753 peptide and r1881
Structure: Androgen receptor. Chain: a. Fragment: ligand binding domain. Synonym: dihydrotestosterone receptor. Engineered: yes. Other_details: inhibited by r1881. 14-mer fragment of nuclear receptor coactivator 2. Chain: b.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: ar, nr3c4. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Other_details: human ar lbd (663-919) with thrombin cleavable nh2-terminal his tag. Synthetic: yes.
Biol. unit: Dimer (from PQS)
1.89Å     R-factor:   0.220     R-free:   0.242
Authors: B.He,R.T.Gampe Jr.,A.J.Kole,A.T.Hnat,T.B.Stanley,G.An, E.L.Stewart,R.I.Kalman,J.T.Minges,E.M.Wilson
Key ref:
B.He et al. (2004). Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell, 16, 425-438. PubMed id: 15525515 DOI: 10.1016/j.molcel.2004.09.036
12-Aug-05     Release date:   30-Aug-05    
Supersedes: 1xq2
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P10275  (ANDR_HUMAN) -  Androgen receptor
919 a.a.
242 a.a.
Protein chain
Pfam   ArchSchema ?
Q15596  (NCOA2_HUMAN) -  Nuclear receptor coactivator 2
1464 a.a.
11 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     nucleus   1 term 
  Biological process     steroid hormone mediated signaling pathway   2 terms 
  Biochemical function     DNA binding     3 terms  


DOI no: 10.1016/j.molcel.2004.09.036 Mol Cell 16:425-438 (2004)
PubMed id: 15525515  
Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance.
B.He, R.T.Gampe, A.J.Kole, A.T.Hnat, T.B.Stanley, G.An, E.L.Stewart, R.I.Kalman, J.T.Minges, E.M.Wilson.
The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.
  Selected figure(s)  
Figure 2.
Figure 2. Structural Details for AR FXXLF and TIF2-III LXXLL Peptide-AR LBD-R1881 Complexes(A) 2F[o] − F[c] electron density map (blue) contoured at 1.8σ from 1.8 Å data for bound AR 20-30. Except for NH[2]-terminal arginine, clearly ordered electron density is observed for all peptide residues. Carbon atoms are green, oxygen red, and nitrogen blue; annotations for AR LBD are in yellow, AR 20-30 in orange with intact charge-clamp H bonds in solid orange lines with distances.(B) 2F[o] − F[c] electron density map (blue) contoured at 1.4σ from 1.9 Å data for bound TIF2-III 740-753. Electron density is devoid for K740, D752, and D753 and poor for L744 and K751 that were built as alanine. H bond interactions are shown with solid orange lines. Excess distance and/or the disordered E897 carboxylate oxygens prevent description of electrostatic interactions to the TIF2-III backbone amides and the proximal N742 side chain. Also the D731 to TIF2-III R746 distance is too long to support direct H bonding (dashed yellow lines with distances and colors as in [A]).(C) Surface representation of AR AF2 with bound AR 20-30. AR E897, E893, and E709 with K720, K717, and R726 (Roman font) create charge clusters (positive in blue, negative in red) that flank FQNLF (italicized font). FXXLF is charge clamped by E897 and K720.(D) Surface representation of AR AF2 bound to TIF2-III. AR E897, E893, and E709 and K720, K717, and R726 (Roman font) create charge clusters (positive blue, negative red) that flank LRYLL (italicized font). TIF2-III lacks backbone H bonds to AR E897 but H bonds with K720 and AR R726 that moves left to weakly H bond with L749. TIF2-III L745 and L749 make fewer less optimal hydrophobic contacts with Q738, M734, and V730 located in AF2 (green) helix 4 ridge and K720 as does L748 to AR V713.(E) Superimposed surface representation of the C-terminal shift of TIF2-III (yellow) to the AR FXXLF (magenta)-AR-R1881 structure (backbone rmsd 0.21 Å). TIF2-III LRYLL i+1 (not visible) and i+5 leucines are shifted but in register with corresponding phenylalanines in AR 20-30. Binding TIF2-III requires AR K720 to move (Figure 2D) allowing AR R726 to move and participate in LXXLL binding.(F) Surface representation of peptide-free AR AF2. AR E897, E893, E709 and K720, K717, R726 present negative (red) and positive (blue) charge clusters that flank AF2 (green).
Figure 3.
Figure 3. AF2 Determinants of FXXLF and LXXLL Motif Binding Specificity(A and B) Affinities of FXXLF and LXXLL peptides for AR and ERα LBDs. Binding of ERα (▪) and AR ( triangle, filled ) LBDs to AR 20-30 ([A], FXXLF) and TIF2-III 740-751 ([B], LXXLL) and fluoroscein-labeled peptides were measured by fluorescence polarization.(C) Sequence alignment of AF2 surface residues for human AR GenBank M20132, human PR QRHUP, sea lamprey progestin receptor AY028458, human GR P04150, human mineralocorticoid receptor NP000892, sea lamprey corticoid receptor AY028457, human ERα P03372, human ERβ NP001428, sea lamprey ER AY028456, California sea hare Aplysia californica mollusk ER AY327135, and human retinoic acid receptor α P10276. AR AF2 residues involved in FXXLF motif binding are shaded.(D) Substitution of PR and ER residues in AR AF2. Two-hybrid assays in HepG2 cells with and without 10 nM R1881 used 5×GAL4Luc 3 and 10 ng/well pCMVhAR, AR-V730I-M734I, or AR-V730L-M734V, with 50 ng/well of GAL0, GAL-AR20-30 (ARFx), GAL-TIF2-738-756 (TIF2-III, 3^rd LXXLL), or GAL-SRC1-1428-1441 (SRC-IV, 4^th and C-terminal LXXLL). Inset: schematic of two-hybrid assay for FXXLF motif binding by AR.(E) Reduction in coregulator FXXLF motif binding by ER-like AR mutant. Two-hybrid assays in HepG2 cells with and without 10 nM R1881 used 10 ng/well pCMVhAR or AR-V730L-M734V with 50 ng/well GAL0, GAL-ARFx, GAL-ARA54-447-465 (ARA54Fx), or GAL-ARA70-321-340 (ARA70Fx).
  The above figures are reprinted by permission from Cell Press: Mol Cell (2004, 16, 425-438) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20690138 D.J.van de Wijngaart, H.J.Dubbink, M.Molier, Vos, G.Jenster, and J.Trapman (2011).
Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cell-penetrating peptides, and lentiviral infection.
  Prostate, 71, 241-253.  
21331774 S.J.Kim, H.Choi, S.S.Park, C.Chang, and E.Kim (2011).
Stearoyl CoA desaturase (SCD) facilitates proliferation of prostate cancer cells through enhancement of androgen receptor transactivation.
  Mol Cells, 31, 371-377.  
21826082 T.A.Yap, A.Zivi, A.Omlin, and Bono (2011).
The changing therapeutic landscape of castration-resistant prostate cancer.
  Nat Rev Clin Oncol, 8, 597-610.  
20723571 L.Jin, and Y.Li (2010).
Structural and functional insights into nuclear receptor signaling.
  Adv Drug Deliv Rev, 62, 1218-1226.  
20148675 P.Huang, V.Chandra, and F.Rastinejad (2010).
Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics.
  Annu Rev Physiol, 72, 247-272.  
20708648 W.Gao (2010).
Androgen receptor as a therapeutic target.
  Adv Drug Deliv Rev, 62, 1277-1284.  
19995608 X.E.Zhou, K.Suino-Powell, P.L.Ludidi, D.P.McDonnell, and H.E.Xu (2010).
Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs.
  Protein Expr Purif, 71, 21-27.  
19724790 B.Vaz, S.Möcklinghoff, S.Folkertsma, S.Lusher, Vlieg, and L.Brunsveld (2009).
Computational design, synthesis, and evaluation of miniproteins as androgen receptor coactivator mimics.
  Chem Commun (Camb), (), 5377-5379.  
19828458 E.B.Askew, S.Bai, A.T.Hnat, J.T.Minges, and E.M.Wilson (2009).
Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators.
  J Biol Chem, 284, 34793-34808.  
19237573 E.Suzuki, Y.Zhao, S.Ito, S.Sawatsubashi, T.Murata, T.Furutani, Y.Shirode, K.Yamagata, M.Tanabe, S.Kimura, T.Ueda, S.Fujiyama, J.Lim, H.Matsukawa, A.P.Kouzmenko, T.Aigaki, T.Tabata, K.Takeyama, and S.Kato (2009).
Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity.
  Proc Natl Acad Sci U S A, 106, 3818-3822.  
19846556 G.B.Rha, G.Wu, S.E.Shoelson, and Y.I.Chi (2009).
Multiple binding modes between HNF4alpha and the LXXLL motifs of PGC-1alpha lead to full activation.
  J Biol Chem, 284, 35165-35176.
PDB code: 3fs1
19796750 Y.Chen, N.J.Clegg, and H.I.Scher (2009).
Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target.
  Lancet Oncol, 10, 981-991.  
18612376 F.Claessens, S.Denayer, N.Van Tilborgh, S.Kerkhofs, C.Helsen, and A.Haelens (2008).
Diverse roles of androgen receptor (AR) domains in AR-mediated signaling.
  Nucl Recept Signal, 6, e008.  
18441008 H.Greschik, M.Althage, R.Flaig, Y.Sato, V.Chavant, C.Peluso-Iltis, L.Choulier, P.Cronet, N.Rochel, R.Schüle, P.E.Strömstedt, and D.Moras (2008).
Communication between the ERRalpha homodimer interface and the PGC-1alpha binding surface via the helix 8-9 loop.
  J Biol Chem, 283, 20220-20230.
PDB code: 3d24
18668523 P.Singh, G.Hallur, R.K.Anchoori, O.Bakare, Y.Kageyama, S.R.Khan, and J.T.Isaacs (2008).
Rational design of novel antiandrogens for neutralizing androgen receptor function in hormone refractory prostate cancer.
  Prostate, 68, 1570-1581.  
18212060 S.Bai, and E.M.Wilson (2008).
Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor.
  Mol Cell Biol, 28, 1947-1963.  
18593950 S.M.Dehm, L.J.Schmidt, H.V.Heemers, R.L.Vessella, and D.J.Tindall (2008).
Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance.
  Cancer Res, 68, 5469-5477.  
17164529 A.M.Hassell, G.An, R.K.Bledsoe, J.M.Bynum, H.L.Carter, S.J.Deng, R.T.Gampe, T.E.Grisard, K.P.Madauss, R.T.Nolte, W.J.Rocque, L.Wang, K.L.Weaver, S.P.Williams, G.B.Wisely, R.Xu, and L.M.Shewchuk (2007).
Crystallization of protein-ligand complexes.
  Acta Crystallogr D Biol Crystallogr, 63, 72-79.  
17137423 D.L.Bain, A.F.Heneghan, K.D.Connaghan-Jones, and M.T.Miura (2007).
Nuclear receptor structure: implications for function.
  Annu Rev Physiol, 69, 201-220.  
17591767 E.B.Askew, R.T.Gampe, T.B.Stanley, J.L.Faggart, and E.M.Wilson (2007).
Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone.
  J Biol Chem, 282, 25801-25816.
PDB codes: 2q7i 2q7j 2q7k 2q7l
17911242 E.Estébanez-Perpiñá, L.A.Arnold, A.A.Arnold, P.Nguyen, E.D.Rodrigues, E.Mar, R.Bateman, P.Pallai, K.M.Shokat, J.D.Baxter, R.K.Guy, P.Webb, and R.J.Fletterick (2007).
A surface on the androgen receptor that allosterically regulates coactivator binding.
  Proc Natl Acad Sci U S A, 104, 16074-16079.
PDB codes: 2pio 2pip 2piq 2pir 2pit 2piu 2piv 2piw 2pix 2pkl 2qpy
17464357 I.J.McEwan, D.Lavery, K.Fischer, and K.Watt (2007).
Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors.
  Nucl Recept Signal, 5, e001.  
17336451 K.Robzyk, H.Oen, G.Buchanan, L.M.Butler, W.D.Tilley, A.K.Mandal, N.Rosen, and A.J.Caplan (2007).
Uncoupling of hormone-dependence from chaperone-dependence in the L701H mutation of the androgen receptor.
  Mol Cell Endocrinol, 268, 67-74.  
17711855 L.Cantin, F.Faucher, J.F.Couture, Jésus-Tran, P.Legrand, L.C.Ciobanu, Y.Fréchette, R.Labrecque, S.M.Singh, F.Labrie, and R.Breton (2007).
Structural characterization of the human androgen receptor ligand-binding domain complexed with EM5744, a rationally designed steroidal ligand bearing a bulky chain directed toward helix 12.
  J Biol Chem, 282, 30910-30919.
PDB code: 2pnu
17200111 L.Michalik, V.Zoete, G.Krey, A.Grosdidier, L.Gelman, P.Chodanowski, J.N.Feige, B.Desvergne, W.Wahli, and O.Michielin (2007).
Combined simulation and mutagenesis analyses reveal the involvement of key residues for peroxisome proliferator-activated receptor alpha helix 12 dynamic behavior.
  J Biol Chem, 282, 9666-9677.  
17163421 R.Chmelar, G.Buchanan, E.F.Need, W.Tilley, and N.M.Greenberg (2007).
Androgen receptor coregulators and their involvement in the development and progression of prostate cancer.
  Int J Cancer, 120, 719-733.  
17300979 V.Nahoum, and W.Bourguet (2007).
Androgen and estrogen receptors: potential of crystallography in the fight against cancer.
  Int J Biochem Cell Biol, 39, 1280-1287.  
17170703 W.Qi, H.Wu, L.Yang, D.D.Boyd, and Z.Wang (2007).
A novel function of caspase-8 in the regulation of androgen-receptor-driven gene expression.
  EMBO J, 26, 65-75.  
17142810 W.Yong, Z.Yang, S.Periyasamy, H.Chen, S.Yucel, W.Li, L.Y.Lin, I.M.Wolf, M.J.Cohn, L.S.Baskin, E.R.Sánchez, and W.Shou (2007).
Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology.
  J Biol Chem, 282, 5026-5036.  
16365032 B.He, R.T.Gampe, A.T.Hnat, J.L.Faggart, J.T.Minges, F.S.French, and E.M.Wilson (2006).
Probing the functional link between androgen receptor coactivator and ligand-binding sites in prostate cancer and androgen insensitivity.
  J Biol Chem, 281, 6648-6663.  
16690616 D.J.van de Wijngaart, M.E.van Royen, R.Hersmus, A.C.Pike, A.B.Houtsmuller, G.Jenster, J.Trapman, and H.J.Dubbink (2006).
Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain.
  J Biol Chem, 281, 19407-19416.  
16641486 K.Pereira de Jésus-Tran, P.L.Côté, L.Cantin, J.Blanchet, F.Labrie, and R.Breton (2006).
Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity.
  Protein Sci, 15, 987-999.
PDB codes: 2am9 2ama 2amb
16870607 S.M.Dehm, and D.J.Tindall (2006).
Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells.
  J Biol Chem, 281, 27882-27893.  
16129672 C.E.Bohl, D.D.Miller, J.Chen, C.E.Bell, and J.T.Dalton (2005).
Structural basis for accommodation of nonsteroidal ligands in the androgen receptor.
  J Biol Chem, 280, 37747-37754.
PDB codes: 2ax6 2ax7 2ax8 2ax9 2axa
15833816 C.E.Bohl, W.Gao, D.D.Miller, C.E.Bell, and J.T.Dalton (2005).
Structural basis for antagonism and resistance of bicalutamide in prostate cancer.
  Proc Natl Acad Sci U S A, 102, 6201-6206.
PDB code: 1z95
15860367 C.Y.Chang, and D.P.McDonnell (2005).
Androgen receptor-cofactor interactions as targets for new drug discovery.
  Trends Pharmacol Sci, 26, 225-228.  
15994236 F.Schaufele, X.Carbonell, M.Guerbadot, S.Borngraeber, M.S.Chapman, A.A.Ma, J.N.Miner, and M.I.Diamond (2005).
The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions.
  Proc Natl Acad Sci U S A, 102, 9802-9807.  
15684378 S.Bai, B.He, and E.M.Wilson (2005).
Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction.
  Mol Cell Biol, 25, 1238-1257.  
16159155 W.Gao, C.E.Bohl, and J.T.Dalton (2005).
Chemistry and structural biology of androgen receptor.
  Chem Rev, 105, 3352-3370.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.