 |
PDBsum entry 2abk
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.4.2.99.18
- DNA-(apurinic or apyrimidinic site) lyase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
2'-deoxyribonucleotide-(2'-deoxyribose 5'-phosphate)- 2'-deoxyribonucleotide-DNA = a 3'-end 2'-deoxyribonucleotide-(2,3- dehydro-2,3-deoxyribose 5'-phosphate)-DNA + a 5'-end 5'-phospho- 2'-deoxyribonucleoside-DNA + H+
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Embo J
14:4108-4120
(1995)
|
|
PubMed id:
|
|
|
|
|
| |
|
Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.
|
|
M.M.Thayer,
H.Ahern,
D.Xing,
R.P.Cunningham,
J.A.Tainer.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The 1.85 A crystal structure of endonuclease III, combined with mutational
analysis, suggests the structural basis for the DNA binding and catalytic
activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop
(FCL) motifs, which we have named for their secondary structure, bracket the
cleft separating the two alpha-helical domains of the enzyme. These two novel
DNA binding motifs and the solvent-filled pocket in the cleft between them all
lie within a positively charged and sequence-conserved surface region. Lys120
and Asp138, both shown by mutagenesis to be catalytically important, lie at the
mouth of this pocket, suggesting that this pocket is part of the active site.
The positions of the HhH motif and protruding FCL motif, which contains the DNA
binding residue Lys191, can accommodate B-form DNA, with a flipped-out base
bound within the active site pocket. The identification of HhH and FCL sequence
patterns in other DNA binding proteins suggests that these motifs may be a
recurrent structural theme for DNA binding proteins.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
F.Faucher,
S.S.Wallace,
and
S.Doublié
(2010).
The C-terminal lysine of Ogg2 DNA glycosylases is a major molecular determinant for guanine/8-oxoguanine distinction.
|
| |
J Mol Biol,
397,
46-56.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.García-Prieto,
J.Gómez-Raja,
E.Andaluz,
R.Calderone,
and
G.Larriba
(2010).
Role of the homologous recombination genes RAD51 and RAD59 in the resistance of Candida albicans to UV light, radiomimetic and anti-tumor compounds and oxidizing agents.
|
| |
Fungal Genet Biol,
47,
433-445.
|
 |
|
|
|
|
 |
G.W.Han,
X.L.Yang,
D.McMullan,
Y.E.Chong,
S.S.Krishna,
C.L.Rife,
D.Weekes,
S.M.Brittain,
P.Abdubek,
E.Ambing,
T.Astakhova,
H.L.Axelrod,
D.Carlton,
J.Caruthers,
H.J.Chiu,
T.Clayton,
L.Duan,
J.Feuerhelm,
J.C.Grant,
S.K.Grzechnik,
L.Jaroszewski,
K.K.Jin,
H.E.Klock,
M.W.Knuth,
A.Kumar,
D.Marciano,
M.D.Miller,
A.T.Morse,
E.Nigoghossian,
L.Okach,
J.Paulsen,
R.Reyes,
H.van den Bedem,
A.White,
G.Wolf,
Q.Xu,
K.O.Hodgson,
J.Wooley,
A.M.Deacon,
A.Godzik,
S.A.Lesley,
M.A.Elsliger,
P.Schimmel,
and
I.A.Wilson
(2010).
Structure of a tryptophanyl-tRNA synthetase containing an iron-sulfur cluster.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
1326-1334.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Genereux,
A.K.Boal,
and
J.K.Barton
(2010).
DNA-mediated charge transport in redox sensing and signaling.
|
| |
J Am Chem Soc,
132,
891-905.
|
 |
|
|
|
|
 |
L.Schomacher,
S.Smolorz,
E.Ciirdaeva,
S.Ber,
W.Kramer,
and
H.J.Fritz
(2010).
Helix-hairpin-helix protein MJ1434 from Methanocaldococcus jannaschii and EndoIV homologue TTC0482 from Thermus thermophilus HB27 do not process DNA uracil residues.
|
| |
Nucleic Acids Res,
38,
5119-5129.
|
 |
|
|
|
|
 |
M.L.Hegde,
T.K.Hazra,
and
S.Mitra
(2010).
Functions of disordered regions in mammalian early base excision repair proteins.
|
| |
Cell Mol Life Sci,
67,
3573-3587.
|
 |
|
|
|
|
 |
Y.G.Mok,
R.Uzawa,
J.Lee,
G.M.Weiner,
B.F.Eichman,
R.L.Fischer,
and
J.H.Huh
(2010).
Domain structure of the DEMETER 5-methylcytosine DNA glycosylase.
|
| |
Proc Natl Acad Sci U S A,
107,
19225-19230.
|
 |
|
|
|
|
 |
A.J.Jervis,
J.C.Crack,
G.White,
P.J.Artymiuk,
M.R.Cheesman,
A.J.Thomson,
N.E.Le Brun,
and
J.Green
(2009).
The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion.
|
| |
Proc Natl Acad Sci U S A,
106,
4659-4664.
|
 |
|
|
|
|
 |
A.K.Boal,
J.C.Genereux,
P.A.Sontz,
J.A.Gralnick,
D.K.Newman,
and
J.K.Barton
(2009).
Redox signaling between DNA repair proteins for efficient lesion detection.
|
| |
Proc Natl Acad Sci U S A,
106,
15237-15242.
|
 |
|
|
|
|
 |
C.Greenwood,
L.A.Selth,
A.B.Dirac-Svejstrup,
and
J.Q.Svejstrup
(2009).
An iron-sulfur cluster domain in elp3 important for the structural integrity of elongator.
|
| |
J Biol Chem,
284,
141-149.
|
 |
|
|
|
|
 |
D.Skoko,
M.Li,
Y.Huang,
M.Mizuuchi,
M.Cai,
C.M.Bradley,
P.J.Pease,
B.Xiao,
J.F.Marko,
R.Craigie,
and
K.Mizuuchi
(2009).
Barrier-to-autointegration factor (BAF) condenses DNA by looping.
|
| |
Proc Natl Acad Sci U S A,
106,
16610-16615.
|
 |
|
|
|
|
 |
F.W.Outten,
and
E.C.Theil
(2009).
Iron-based redox switches in biology.
|
| |
Antioxid Redox Signal,
11,
1029-1046.
|
 |
|
|
|
|
 |
J.T.Yeeles,
R.Cammack,
and
M.S.Dillingham
(2009).
An Iron-Sulfur Cluster Is Essential for the Binding of Broken DNA by AddAB-type Helicase-Nucleases.
|
| |
J Biol Chem,
284,
7746-7755.
|
 |
|
|
|
|
 |
K.Imamura,
S.S.Wallace,
and
S.Doublié
(2009).
Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA.
|
| |
J Biol Chem,
284,
26174-26183.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.C.Anderson,
and
V.Daggett
(2009).
The R46Q, R131Q and R154H polymorphs of human DNA glycosylase/beta-lyase hOgg1 severely distort the active site and DNA recognition site but do not cause unfolding.
|
| |
J Am Chem Soc,
131,
9506-9515.
|
 |
|
|
|
|
 |
S.Lee,
and
G.L.Verdine
(2009).
Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase.
|
| |
Proc Natl Acad Sci U S A,
106,
18497-18502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Oyama,
H.Oka,
K.Mayanagi,
T.Shirai,
K.Matoba,
R.Fujikane,
Y.Ishino,
and
K.Morikawa
(2009).
Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm.
|
| |
BMC Struct Biol,
9,
2.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.A.Gorodetsky,
L.E.Dietrich,
P.E.Lee,
B.Demple,
D.K.Newman,
and
J.K.Barton
(2008).
DNA binding shifts the redox potential of the transcription factor SoxR.
|
| |
Proc Natl Acad Sci U S A,
105,
3684-3689.
|
 |
|
|
|
|
 |
A.A.Gorodetsky,
M.C.Buzzeo,
and
J.K.Barton
(2008).
DNA-mediated electrochemistry.
|
| |
Bioconjug Chem,
19,
2285-2296.
|
 |
|
|
|
|
 |
A.Ciccia,
N.McDonald,
and
S.C.West
(2008).
Structural and functional relationships of the XPF/MUS81 family of proteins.
|
| |
Annu Rev Biochem,
77,
259-287.
|
 |
|
|
|
|
 |
A.P.Ortega-Galisteo,
T.Morales-Ruiz,
R.R.Ariza,
and
T.Roldán-Arjona
(2008).
Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks.
|
| |
Plant Mol Biol,
67,
671-681.
|
 |
|
|
|
|
 |
G.Witte,
S.Hartung,
K.Büttner,
and
K.P.Hopfner
(2008).
Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates.
|
| |
Mol Cell,
30,
167-178.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Fan,
J.O.Fuss,
Q.J.Cheng,
A.S.Arvai,
M.Hammel,
V.A.Roberts,
P.K.Cooper,
and
J.A.Tainer
(2008).
XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations.
|
| |
Cell,
133,
789-800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.M.Mullen,
J.T.Bossé,
S.P.Nair,
J.M.Ward,
A.N.Rycroft,
G.Robertson,
P.R.Langford,
and
B.Henderson
(2008).
Pasteurellaceae ComE1 proteins combine the properties of fibronectin adhesins and DNA binding competence proteins.
|
| |
PLoS ONE,
3,
e3991.
|
 |
|
|
|
|
 |
M.L.Hegde,
T.K.Hazra,
and
S.Mitra
(2008).
Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
|
| |
Cell Res,
18,
27-47.
|
 |
|
|
|
|
 |
S.C.Wolski,
J.Kuper,
P.Hänzelmann,
J.J.Truglio,
D.L.Croteau,
B.Van Houten,
and
C.Kisker
(2008).
Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD.
|
| |
PLoS Biol,
6,
e149.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.H.Metz,
T.Hollis,
and
B.F.Eichman
(2007).
DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
|
| |
EMBO J,
26,
2411-2420.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.K.Boal,
E.Yavin,
and
J.K.Barton
(2007).
DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport?
|
| |
J Inorg Biochem,
101,
1913-1921.
|
 |
|
|
|
|
 |
B.E.Weiner,
H.Huang,
B.M.Dattilo,
M.J.Nilges,
E.Fanning,
and
W.J.Chazin
(2007).
An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase.
|
| |
J Biol Chem,
282,
33444-33451.
|
 |
|
|
|
|
 |
C.T.Radom,
A.Banerjee,
and
G.L.Verdine
(2007).
Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations.
|
| |
J Biol Chem,
282,
9182-9194.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Barthelme,
U.Scheele,
S.Dinkelaker,
A.Janoschka,
F.Macmillan,
S.V.Albers,
A.J.Driessen,
M.S.Stagni,
E.Bill,
W.Meyer-Klaucke,
V.Schünemann,
and
R.Tampé
(2007).
Structural organization of essential iron-sulfur clusters in the evolutionarily highly conserved ATP-binding cassette protein ABCE1.
|
| |
J Biol Chem,
282,
14598-14607.
|
 |
|
|
|
|
 |
J.Timmins,
I.Leiros,
and
S.McSweeney
(2007).
Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding.
|
| |
EMBO J,
26,
3260-3271.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Y.Ha,
H.K.Kim,
d.o. .J.Kim,
K.H.Kim,
S.J.Oh,
H.H.Lee,
H.J.Yoon,
H.K.Song,
and
S.W.Suh
(2007).
The recombination-associated protein RdgC adopts a novel toroidal architecture for DNA binding.
|
| |
Nucleic Acids Res,
35,
2671-2681.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Singh,
A.Srivastava,
S.S.Patel,
and
M.J.Modak
(2007).
Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA.
|
| |
J Biol Chem,
282,
10594-10604.
|
 |
|
|
|
|
 |
M.L.Mendillo,
C.D.Putnam,
and
R.D.Kolodner
(2007).
Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo.
|
| |
J Biol Chem,
282,
16345-16354.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.K.Hazra,
A.Das,
S.Das,
S.Choudhury,
Y.W.Kow,
and
R.Roy
(2007).
Oxidative DNA damage repair in mammalian cells: a new perspective.
|
| |
DNA Repair (Amst),
6,
470-480.
|
 |
|
|
|
|
 |
J.Rudolf,
V.Makrantoni,
W.J.Ingledew,
M.J.Stark,
and
M.F.White
(2006).
The DNA repair helicases XPD and FancJ have essential iron-sulfur domains.
|
| |
Mol Cell,
23,
801-808.
|
 |
|
|
|
|
 |
M.Honda,
J.Inoue,
M.Yoshimasu,
Y.Ito,
T.Shibata,
and
T.Mikawa
(2006).
Identification of the RecR Toprim domain as the binding site for both RecF and RecO. A role of RecR in RecFOR assembly at double-stranded DNA-single-stranded DNA junctions.
|
| |
J Biol Chem,
281,
18549-18559.
|
 |
|
|
|
|
 |
G.M.Lingaraju,
A.A.Sartori,
D.Kostrewa,
A.E.Prota,
J.Jiricny,
and
F.K.Winkler
(2005).
A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.
|
| |
Structure,
13,
87-98.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Newman,
J.Murray-Rust,
J.Lally,
J.Rudolf,
A.Fadden,
P.P.Knowles,
M.F.White,
and
N.Q.McDonald
(2005).
Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition.
|
| |
EMBO J,
24,
895-905.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.A.Kuznetsov,
V.V.Koval,
D.O.Zharkov,
G.A.Nevinsky,
K.T.Douglas,
and
O.S.Fedorova
(2005).
Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase.
|
| |
Nucleic Acids Res,
33,
3919-3931.
|
 |
|
|
|
|
 |
O.A.Lukianova,
and
S.S.David
(2005).
A role for iron-sulfur clusters in DNA repair.
|
| |
Curr Opin Chem Biol,
9,
145-151.
|
 |
|
|
|
|
 |
T.Nishino,
K.Komori,
Y.Ishino,
and
K.Morikawa
(2005).
Structural and functional analyses of an archaeal XPF/Rad1/Mus81 nuclease: asymmetric DNA binding and cleavage mechanisms.
|
| |
Structure,
13,
1183-1192.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Watanabe,
J.O.Blaisdell,
S.S.Wallace,
and
J.P.Bond
(2005).
Engineering functional changes in Escherichia coli endonuclease III based on phylogenetic and structural analyses.
|
| |
J Biol Chem,
280,
34378-34384.
|
 |
|
|
|
|
 |
A.Das,
L.Rajagopalan,
V.S.Mathura,
S.J.Rigby,
S.Mitra,
and
T.K.Hazra
(2004).
Identification of a zinc finger domain in the human NEIL2 (Nei-like-2) protein.
|
| |
J Biol Chem,
279,
47132-47138.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.I.Lee,
K.H.Kim,
S.J.Park,
S.H.Eom,
H.K.Song,
and
S.W.Suh
(2004).
Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair.
|
| |
EMBO J,
23,
2029-2038.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Zhao,
and
P.Russell
(2004).
DNA binding domain in the replication checkpoint protein Mrc1 of Schizosaccharomyces pombe.
|
| |
J Biol Chem,
279,
53023-53027.
|
 |
|
|
|
|
 |
J.Brozmanová,
V.Vlcková,
and
M.Chovanec
(2004).
How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae.
|
| |
Curr Genet,
46,
317-330.
|
 |
|
|
|
|
 |
J.C.Fromme,
A.Banerjee,
and
G.L.Verdine
(2004).
DNA glycosylase recognition and catalysis.
|
| |
Curr Opin Struct Biol,
14,
43-49.
|
 |
|
|
|
|
 |
Y.Choi,
J.J.Harada,
R.B.Goldberg,
and
R.L.Fischer
(2004).
An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene.
|
| |
Proc Natl Acad Sci U S A,
101,
7481-7486.
|
 |
|
|
|
|
 |
B.F.Eichman,
E.J.O'Rourke,
J.P.Radicella,
and
T.Ellenberger
(2003).
Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.
|
| |
EMBO J,
22,
4898-4909.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.R.Szymczyna,
J.Bowman,
S.McCracken,
A.Pineda-Lucena,
Y.Lu,
B.Cox,
M.Lambermon,
B.R.Graveley,
C.H.Arrowsmith,
and
B.J.Blencowe
(2003).
Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing.
|
| |
Genes Dev,
17,
461-475.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.S.Shin,
L.Pellegrini,
D.S.Daniels,
B.Yelent,
L.Craig,
D.Bates,
D.S.Yu,
M.K.Shivji,
C.Hitomi,
A.S.Arvai,
N.Volkmann,
H.Tsuruta,
T.L.Blundell,
A.R.Venkitaraman,
and
J.A.Tainer
(2003).
Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2.
|
| |
EMBO J,
22,
4566-4576.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.J.O'Rourke,
C.Chevalier,
A.V.Pinto,
J.M.Thiberge,
L.Ielpi,
A.Labigne,
and
J.P.Radicella
(2003).
Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization.
|
| |
Proc Natl Acad Sci U S A,
100,
2789-2794.
|
 |
|
|
|
|
 |
E.M.Boon,
A.L.Livingston,
N.H.Chmiel,
S.S.David,
and
J.K.Barton
(2003).
DNA-mediated charge transport for DNA repair.
|
| |
Proc Natl Acad Sci U S A,
100,
12543-12547.
|
 |
|
|
|
|
 |
G.L.Verdine,
and
D.P.Norman
(2003).
Covalent trapping of protein-DNA complexes.
|
| |
Annu Rev Biochem,
72,
337-366.
|
 |
|
|
|
|
 |
H.Dou,
S.Mitra,
and
T.K.Hazra
(2003).
Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2.
|
| |
J Biol Chem,
278,
49679-49684.
|
 |
|
|
|
|
 |
J.C.Fromme,
and
G.L.Verdine
(2003).
Structure of a trapped endonuclease III-DNA covalent intermediate.
|
| |
EMBO J,
22,
3461-3471.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.C.Fromme,
S.D.Bruner,
W.Yang,
M.Karplus,
and
G.L.Verdine
(2003).
Product-assisted catalysis in base-excision DNA repair.
|
| |
Nat Struct Biol,
10,
204-211.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Chung,
E.K.Im,
H.Y.Park,
J.H.Kwon,
S.Lee,
J.Oh,
K.C.Hwang,
J.H.Lee,
and
Y.Jang
(2003).
A novel uracil-DNA glycosylase family related to the helix-hairpin-helix DNA glycosylase superfamily.
|
| |
Nucleic Acids Res,
31,
2045-2055.
|
 |
|
|
|
|
 |
P.Wu,
C.Qiu,
A.Sohail,
X.Zhang,
A.S.Bhagwat,
and
X.Cheng
(2003).
Mismatch repair in methylated DNA. Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4.
|
| |
J Biol Chem,
278,
5285-5291.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.J.O'Neill,
O.V.Vorob'eva,
H.Shahbakhti,
E.Zmuda,
A.S.Bhagwat,
and
G.S.Baldwin
(2003).
Mismatch uracil glycosylase from Escherichia coli: a general mismatch or a specific DNA glycosylase?
|
| |
J Biol Chem,
278,
20526-20532.
|
 |
|
|
|
|
 |
X.Liu,
S.Choudhury,
and
R.Roy
(2003).
In vitro and in vivo dimerization of human endonuclease III stimulates its activity.
|
| |
J Biol Chem,
278,
50061-50069.
|
 |
|
|
|
|
 |
A.R.Pavlov,
G.I.Belova,
S.A.Kozyavkin,
and
A.I.Slesarev
(2002).
Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
99,
13510-13515.
|
 |
|
|
|
|
 |
D.O.Zharkov,
and
A.P.Grollman
(2002).
Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases.
|
| |
Free Radic Biol Med,
32,
1254-1263.
|
 |
|
|
|
|
 |
D.O.Zharkov,
G.Golan,
R.Gilboa,
A.S.Fernandes,
S.E.Gerchman,
J.H.Kycia,
R.A.Rieger,
A.P.Grollman,
and
G.Shoham
(2002).
Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate.
|
| |
EMBO J,
21,
789-800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.I.Belova,
R.Prasad,
I.V.Nazimov,
S.H.Wilson,
and
A.I.Slesarev
(2002).
The domain organization and properties of individual domains of DNA topoisomerase V, a type 1B topoisomerase with DNA repair activities.
|
| |
J Biol Chem,
277,
4959-4965.
|
 |
|
|
|
|
 |
J.A.Hinks,
M.C.Evans,
Y.De Miguel,
A.A.Sartori,
J.Jiricny,
and
L.H.Pearl
(2002).
An iron-sulfur cluster in the family 4 uracil-DNA glycosylases.
|
| |
J Biol Chem,
277,
16936-16940.
|
 |
|
|
|
|
 |
J.J.Dervan,
M.Feng,
D.Patel,
J.A.Grasby,
P.J.Artymiuk,
T.A.Ceska,
and
J.R.Sayers
(2002).
Interactions of mutant and wild-type flap endonucleases with oligonucleotide substrates suggest an alternative model of DNA binding.
|
| |
Proc Natl Acad Sci U S A,
99,
8542-8547.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.S.Yan,
and
M.M.Zhou
(2002).
TAGging the target for damage control.
|
| |
Nat Struct Biol,
9,
638-640.
|
 |
|
|
|
|
 |
L.Serre,
K.Pereira de Jésus,
S.Boiteux,
C.Zelwer,
and
B.Castaing
(2002).
Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA.
|
| |
EMBO J,
21,
2854-2865.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.T.Ocampo,
W.Chaung,
D.R.Marenstein,
M.K.Chan,
A.Altamirano,
A.K.Basu,
R.J.Boorstein,
R.P.Cunningham,
and
G.W.Teebor
(2002).
Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity.
|
| |
Mol Cell Biol,
22,
6111-6121.
|
 |
|
|
|
|
 |
M.Takao,
S.Kanno,
T.Shiromoto,
R.Hasegawa,
H.Ide,
S.Ikeda,
A.H.Sarker,
S.Seki,
J.Z.Xing,
X.C.Le,
M.Weinfeld,
K.Kobayashi,
J.Miyazaki,
M.Muijtjens,
J.H.Hoeijmakers,
G.van der Horst,
A.Yasui,
and
A.H.Sarker
(2002).
Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols.
|
| |
EMBO J,
21,
3486-3493.
|
 |
|
|
|
|
 |
R.Gilboa,
D.O.Zharkov,
G.Golan,
A.S.Fernandes,
S.E.Gerchman,
E.Matz,
J.H.Kycia,
A.P.Grollman,
and
G.Shoham
(2002).
Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA.
|
| |
J Biol Chem,
277,
19811-19816.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.H.Elder,
and
G.L.Dianov
(2002).
Repair of dihydrouracil supported by base excision repair in mNTH1 knock-out cell extracts.
|
| |
J Biol Chem,
277,
50487-50490.
|
 |
|
|
|
|
 |
S.Singh,
G.E.Folkers,
A.M.Bonvin,
R.Boelens,
R.Wechselberger,
A.Niztayev,
and
R.Kaptein
(2002).
Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli.
|
| |
EMBO J,
21,
6257-6266.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Starkuviene,
and
H.J.Fritz
(2002).
A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus.
|
| |
Nucleic Acids Res,
30,
2097-2102.
|
 |
|
|
|
|
 |
Y.N.Fondufe-Mittendorf,
C.Härer,
W.Kramer,
and
H.J.Fritz
(2002).
Two amino acid replacements change the substrate preference of DNA mismatch glycosylase Mig.MthI from T/G to A/G.
|
| |
Nucleic Acids Res,
30,
614-621.
|
 |
|
|
|
|
 |
Y.W.Kow
(2002).
Repair of deaminated bases in DNA.
|
| |
Free Radic Biol Med,
33,
886-893.
|
 |
|
|
|
|
 |
A.Bellacosa
(2001).
Role of MED1 (MBD4) Gene in DNA repair and human cancer.
|
| |
J Cell Physiol,
187,
137-144.
|
 |
|
|
|
|
 |
G.I.Belova,
R.Prasad,
S.A.Kozyavkin,
J.A.Lake,
S.H.Wilson,
and
A.I.Slesarev
(2001).
A type IB topoisomerase with DNA repair activities.
|
| |
Proc Natl Acad Sci U S A,
98,
6015-6020.
|
 |
|
|
|
|
 |
H.Yang,
I.T.Phan,
S.Fitz-Gibbon,
M.K.Shivji,
R.D.Wood,
W.M.Clendenin,
E.C.Hyman,
and
J.H.Miller
(2001).
A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum.
|
| |
Nucleic Acids Res,
29,
604-613.
|
 |
|
|
|
|
 |
N.H.Chmiel,
M.P.Golinelli,
A.W.Francis,
and
S.S.David
(2001).
Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain.
|
| |
Nucleic Acids Res,
29,
553-564.
|
 |
|
|
|
|
 |
O.D.Schärer,
and
J.Jiricny
(2001).
Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
|
| |
Bioessays,
23,
270-281.
|
 |
|
|
|
|
 |
W.Ross,
A.Ernst,
and
R.L.Gourse
(2001).
Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove.
|
| |
Genes Dev,
15,
491-506.
|
 |
|
|
|
|
 |
X.Cheng,
and
R.J.Roberts
(2001).
AdoMet-dependent methylation, DNA methyltransferases and base flipping.
|
| |
Nucleic Acids Res,
29,
3784-3795.
|
 |
|
|
|
|
 |
X.Li,
and
A.L.Lu
(2001).
Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans.
|
| |
J Bacteriol,
183,
6151-6158.
|
 |
|
|
|
|
 |
X.Liu,
and
R.Roy
(2001).
Mutation at active site lysine 212 to arginine uncouples the glycosylase activity from the lyase activity of human endonuclease III.
|
| |
Biochemistry,
40,
13617-13622.
|
 |
|
|
|
|
 |
A.J.Doherty,
and
S.W.Suh
(2000).
Structural and mechanistic conservation in DNA ligases.
|
| |
Nucleic Acids Res,
28,
4051-4058.
|
 |
|
|
|
|
 |
C.Dherin,
M.Dizdaroglu,
H.Doerflinger,
S.Boiteux,
and
J.P.Radicella
(2000).
Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines.
|
| |
Nucleic Acids Res,
28,
4583-4592.
|
 |
|
|
|
|
 |
C.V.Privezentzev,
M.Saparbaev,
A.Sambandam,
M.M.Greenberg,
and
J.Laval
(2000).
AlkA protein is the third Escherichia coli DNA repair protein excising a ring fragmentation product of thymine.
|
| |
Biochemistry,
39,
14263-14268.
|
 |
|
|
|
|
 |
D.O.Zharkov,
R.Gilboa,
I.Yagil,
J.H.Kycia,
S.E.Gerchman,
G.Shoham,
and
A.P.Grollman
(2000).
Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli.
|
| |
Biochemistry,
39,
14768-14778.
|
 |
|
|
|
|
 |
E.H.Postel,
B.M.Abramczyk,
M.N.Levit,
and
S.Kyin
(2000).
Catalysis of DNA cleavage and nucleoside triphosphate synthesis by NM23-H2/NDP kinase share an active site that implies a DNA repair function.
|
| |
Proc Natl Acad Sci U S A,
97,
14194-14199.
|
 |
|
|
|
|
 |
F.Petronzelli,
A.Riccio,
G.D.Markham,
S.H.Seeholzer,
M.Genuardi,
M.Karbowski,
A.T.Yeung,
Y.Matsumoto,
and
A.Bellacosa
(2000).
Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain.
|
| |
J Cell Physiol,
185,
473-480.
|
 |
|
|
|
|
 |
H.Yang,
S.Fitz-Gibbon,
E.M.Marcotte,
J.H.Tai,
E.C.Hyman,
and
J.H.Miller
(2000).
Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum.
|
| |
J Bacteriol,
182,
1272-1279.
|
 |
|
|
|
|
 |
J.J.Tsai-Wu,
H.T.Su,
Y.L.Wu,
S.M.Hsu,
and
C.H.Wu
(2000).
Nuclear localization of the human mutY homologue hMYH.
|
| |
J Cell Biochem,
77,
666-677.
|
 |
|
|
|
|
 |
J.Y.Lee,
C.Chang,
H.K.Song,
J.Moon,
J.K.Yang,
H.K.Kim,
S.T.Kwon,
and
S.W.Suh
(2000).
Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications.
|
| |
EMBO J,
19,
1119-1129.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Asagoshi,
H.Odawara,
H.Nakano,
T.Miyano,
H.Terato,
Y.Ohyama,
S.Seki,
and
H.Ide
(2000).
Comparison of substrate specificities of Escherichia coli endonuclease III and its mouse homologue (mNTH1) using defined oligonucleotide substrates.
|
| |
Biochemistry,
39,
11389-11398.
|
 |
|
|
|
|
 |
L.J.Deterding,
R.Prasad,
G.P.Mullen,
S.H.Wilson,
and
K.B.Tomer
(2000).
Mapping of the 5'-2-deoxyribose-5-phosphate lyase active site in DNA polymerase beta by mass spectrometry.
|
| |
J Biol Chem,
275,
10463-10471.
|
 |
|
|
|
|
 |
M.Dizdaroglu,
C.Bauche,
H.Rodriguez,
and
J.Laval
(2000).
Novel substrates of Escherichia coli nth protein and its kinetics for excision of modified bases from DNA damaged by free radicals.
|
| |
Biochemistry,
39,
5586-5592.
|
 |
|
|
|
|
 |
M.Sugahara,
T.Mikawa,
T.Kumasaka,
M.Yamamoto,
R.Kato,
K.Fukuyama,
Y.Inoue,
and
S.Kuramitsu
(2000).
Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8.
|
| |
EMBO J,
19,
3857-3869.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Guibourt,
B.Castaing,
P.A.Van Der Kemp,
and
S.Boiteux
(2000).
Catalytic and DNA binding properties of the ogg1 protein of Saccharomyces cerevisiae: comparison between the wild type and the K241R and K241Q active-site mutant proteins.
|
| |
Biochemistry,
39,
1716-1724.
|
 |
|
|
|
|
 |
O.M.Sidorkina,
and
J.Laval
(2000).
Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein.
|
| |
J Biol Chem,
275,
9924-9929.
|
 |
|
|
|
|
 |
R.Roy,
T.Biswas,
J.C.Lee,
and
S.Mitra
(2000).
Mutation of a unique aspartate residue abolishes the catalytic activity but not substrate binding of the mouse N-methylpurine-DNA glycosylase (MPG).
|
| |
J Biol Chem,
275,
4278-4282.
|
 |
|
|
|
|
 |
S.D.Bruner,
D.P.Norman,
J.C.Fromme,
and
G.L.Verdine
(2000).
Structural and mechanistic studies on repair of 8-oxoguanine in mammalian cells.
|
| |
Cold Spring Harb Symp Quant Biol,
65,
103-111.
|
 |
|
|
|
|
 |
S.D.Williams,
and
S.S.David
(2000).
A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity.
|
| |
Biochemistry,
39,
10098-10109.
|
 |
|
|
|
|
 |
T.C.Umland,
S.Q.Wei,
R.Craigie,
and
D.R.Davies
(2000).
Structural basis of DNA bridging by barrier-to-autointegration factor.
|
| |
Biochemistry,
39,
9130-9138.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Hollis,
Y.Ichikawa,
and
T.Ellenberger
(2000).
DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
|
| |
EMBO J,
19,
758-766.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Li,
P.M.Wright,
and
A.L.Lu
(2000).
The C-terminal domain of MutY glycosylase determines the 7,8-dihydro-8-oxo-guanine specificity and is crucial for mutation avoidance.
|
| |
J Biol Chem,
275,
8448-8455.
|
 |
|
|
|
|
 |
X.Shao,
and
N.V.Grishin
(2000).
Common fold in helix-hairpin-helix proteins.
|
| |
Nucleic Acids Res,
28,
2643-2650.
|
 |
|
|
|
|
 |
A.K.McCullough,
M.L.Dodson,
and
R.S.Lloyd
(1999).
Initiation of base excision repair: glycosylase mechanisms and structures.
|
| |
Annu Rev Biochem,
68,
255-285.
|
 |
|
|
|
|
 |
A.Klungland,
M.Höss,
D.Gunz,
A.Constantinou,
S.G.Clarkson,
P.W.Doetsch,
P.H.Bolton,
R.D.Wood,
and
T.Lindahl
(1999).
Base excision repair of oxidative DNA damage activated by XPG protein.
|
| |
Mol Cell,
3,
33-42.
|
 |
|
|
|
|
 |
A.Shekhtman,
L.McNaughton,
R.P.Cunningham,
and
S.M.Baxter
(1999).
Identification of the Archaeoglobus fulgidus endonuclease III DNA interaction surface using heteronuclear NMR methods.
|
| |
Structure,
7,
919-930.
|
 |
|
|
|
|
 |
B.J.Haas,
M.Sandigursky,
J.A.Tainer,
W.A.Franklin,
and
R.P.Cunningham
(1999).
Purification and characterization of Thermotoga maritima endonuclease IV, a thermostable apurinic/apyrimidinic endonuclease and 3'-repair diesterase.
|
| |
J Bacteriol,
181,
2834-2839.
|
 |
|
|
|
|
 |
C.D.Mol,
S.S.Parikh,
C.D.Putnam,
T.P.Lo,
and
J.A.Tainer
(1999).
DNA repair mechanisms for the recognition and removal of damaged DNA bases.
|
| |
Annu Rev Biophys Biomol Struct,
28,
101-128.
|
 |
|
|
|
|
 |
D.Hargreaves,
J.B.Rafferty,
S.E.Sedelnikova,
R.G.Lloyd,
and
D.W.Rice
(1999).
Crystallization of Escherichia coli RuvA complexed with a synthetic Holliday junction.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
263-265.
|
 |
|
|
|
|
 |
H.Beinert,
and
P.J.Kiley
(1999).
Fe-S proteins in sensing and regulatory functions.
|
| |
Curr Opin Chem Biol,
3,
152-157.
|
 |
|
|
|
|
 |
I.Alseth,
L.Eide,
M.Pirovano,
T.Rognes,
E.Seeberg,
and
M.Bjørås
(1999).
The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast.
|
| |
Mol Cell Biol,
19,
3779-3787.
|
 |
|
|
|
|
 |
M.D.Wyatt,
J.M.Allan,
A.Y.Lau,
T.E.Ellenberger,
and
L.D.Samson
(1999).
3-methyladenine DNA glycosylases: structure, function, and biological importance.
|
| |
Bioessays,
21,
668-676.
|
 |
|
|
|
|
 |
M.P.Golinelli,
N.H.Chmiel,
and
S.S.David
(1999).
Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY.
|
| |
Biochemistry,
38,
6997-7007.
|
 |
|
|
|
|
 |
P.M.Wright,
J.Yu,
J.Cillo,
and
A.L.Lu
(1999).
The active site of the Escherichia coli MutY DNA adenine glycosylase.
|
| |
J Biol Chem,
274,
29011-29018.
|
 |
|
|
|
|
 |
S.Adinolfi,
C.Bagni,
M.A.Castiglione Morelli,
F.Fraternali,
G.Musco,
and
A.Pastore
(1999).
Novel RNA-binding motif: the KH module.
|
| |
Biopolymers,
51,
153-164.
|
 |
|
|
|
|
 |
S.S.Parikh,
C.D.Mol,
D.J.Hosfield,
and
J.A.Tainer
(1999).
Envisioning the molecular choreography of DNA base excision repair.
|
| |
Curr Opin Struct Biol,
9,
37-47.
|
 |
|
|
|
|
 |
T.J.Begley,
B.J.Haas,
J.Noel,
A.Shekhtman,
W.A.Williams,
and
R.P.Cunningham
(1999).
A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA.
|
| |
Curr Biol,
9,
653-656.
|
 |
|
|
|
|
 |
Y.Fujii,
T.Shimizu,
M.Kusumoto,
Y.Kyogoku,
T.Taniguchi,
and
T.Hakoshima
(1999).
Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences.
|
| |
EMBO J,
18,
5028-5041.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.X.Wang,
N.Neamati,
J.Jacob,
I.Palmer,
S.J.Stahl,
J.D.Kaufman,
P.L.Huang,
P.L.Huang,
H.E.Winslow,
Y.Pommier,
P.T.Wingfield,
S.Lee-Huang,
A.Bax,
and
D.A.Torchia
(1999).
Solution structure of anti-HIV-1 and anti-tumor protein MAP30: structural insights into its multiple functions.
|
| |
Cell,
99,
433-442.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Lu,
and
W.P.Fawcett
(1998).
Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe.
|
| |
J Biol Chem,
273,
25098-25105.
|
 |
|
|
|
|
 |
B.Holz,
S.Klimasauskas,
S.Serva,
and
E.Weinhold
(1998).
2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases.
|
| |
Nucleic Acids Res,
26,
1076-1083.
|
 |
|
|
|
|
 |
D.Hargreaves,
D.W.Rice,
S.E.Sedelnikova,
P.J.Artymiuk,
R.G.Lloyd,
and
J.B.Rafferty
(1998).
Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 A resolution.
|
| |
Nat Struct Biol,
5,
441-446.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.J.Hosfield,
C.D.Mol,
B.Shen,
and
J.A.Tainer
(1998).
Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity.
|
| |
Cell,
95,
135-146.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.O.Zharkov,
and
A.P.Grollman
(1998).
MutY DNA glycosylase: base release and intermediate complex formation.
|
| |
Biochemistry,
37,
12384-12394.
|
 |
|
|
|
|
 |
J.Jurado,
M.Saparbaev,
T.J.Matray,
M.M.Greenberg,
and
J.Laval
(1998).
The ring fragmentation product of thymidine C5-hydrate when present in DNA is repaired by the Escherichia coli Fpg and Nth proteins.
|
| |
Biochemistry,
37,
7757-7763.
|
 |
|
|
|
|
 |
M.O'Gara,
J.R.Horton,
R.J.Roberts,
and
X.Cheng
(1998).
Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base.
|
| |
Nat Struct Biol,
5,
872-877.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Tani,
K.Shinmura,
T.Kohno,
T.Shiroishi,
S.Wakana,
S.R.Kim,
T.Nohmi,
H.Kasai,
S.Takenoshita,
Y.Nagamachi,
and
J.Yokota
(1998).
Genomic structure and chromosomal localization of the mouse Ogg1 gene that is involved in the repair of 8-hydroxyguanine in DNA damage.
|
| |
Mamm Genome,
9,
32-37.
|
 |
|
|
|
|
 |
O.D.Schärer,
H.M.Nash,
J.Jiricny,
J.Laval,
and
G.L.Verdine
(1998).
Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases.
|
| |
J Biol Chem,
273,
8592-8597.
|
 |
|
|
|
|
 |
R.J.Roberts,
and
X.Cheng
(1998).
Base flipping.
|
| |
Annu Rev Biochem,
67,
181-198.
|
 |
|
|
|
|
 |
R.Prasad,
W.A.Beard,
J.Y.Chyan,
M.W.Maciejewski,
G.P.Mullen,
and
S.H.Wilson
(1998).
Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5'-deoxyribose phosphate lyase activities.
|
| |
J Biol Chem,
273,
11121-11126.
|
 |
|
|
|
|
 |
R.Prasad,
W.A.Beard,
P.R.Strauss,
and
S.H.Wilson
(1998).
Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism.
|
| |
J Biol Chem,
273,
15263-15270.
|
 |
|
|
|
|
 |
R.Rebeil,
Y.Sun,
L.Chooback,
M.Pedraza-Reyes,
C.Kinsland,
T.P.Begley,
and
W.L.Nicholson
(1998).
Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases.
|
| |
J Bacteriol,
180,
4879-4885.
|
 |
|
|
|
|
 |
S.D.Bruner,
H.M.Nash,
W.S.Lane,
and
G.L.Verdine
(1998).
Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway.
|
| |
Curr Biol,
8,
393-403.
|
 |
|
|
|
|
 |
S.Ikeda,
T.Biswas,
R.Roy,
T.Izumi,
I.Boldogh,
A.Kurosky,
A.H.Sarker,
S.Seki,
and
S.Mitra
(1998).
Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue.
|
| |
J Biol Chem,
273,
21585-21593.
|
 |
|
|
|
|
 |
S.L.Porello,
M.J.Cannon,
and
S.S.David
(1998).
A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY.
|
| |
Biochemistry,
37,
6465-6475.
|
 |
|
|
|
|
 |
S.S.Parikh,
C.D.Mol,
G.Slupphaug,
S.Bharati,
H.E.Krokan,
and
J.A.Tainer
(1998).
Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.
|
| |
EMBO J,
17,
5214-5226.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.C.Yuan,
R.H.Whitson,
Q.Liu,
K.Itakura,
and
Y.Chen
(1998).
A novel DNA-binding motif shares structural homology to DNA replication and repair nucleases and polymerases.
|
| |
Nat Struct Biol,
5,
959-964.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Guan,
R.C.Manuel,
A.S.Arvai,
S.S.Parikh,
C.D.Mol,
J.H.Miller,
S.Lloyd,
and
J.A.Tainer
(1998).
MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
|
| |
Nat Struct Biol,
5,
1058-1064.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Matsumoto,
K.Kim,
D.S.Katz,
and
J.A.Feng
(1998).
Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups.
|
| |
Biochemistry,
37,
6456-6464.
|
 |
|
|
|
|
 |
C.Chothia,
T.Hubbard,
S.Brenner,
H.Barns,
and
A.Murzin
(1997).
Protein folds in the all-beta and all-alpha classes.
|
| |
Annu Rev Biophys Biomol Struct,
26,
597-627.
|
 |
|
|
|
|
 |
C.Liang,
and
K.Mislow
(1997).
Topological chirality of iron-sulfur proteins.
|
| |
Biopolymers,
42,
411-414.
|
 |
|
|
|
|
 |
D.G.Vassylyev,
and
K.Morikawa
(1997).
DNA-repair enzymes.
|
| |
Curr Opin Struct Biol,
7,
103-109.
|
 |
|
|
|
|
 |
D.Jiang,
Z.Hatahet,
R.J.Melamede,
Y.W.Kow,
and
S.S.Wallace
(1997).
Characterization of Escherichia coli endonuclease VIII.
|
| |
J Biol Chem,
272,
32230-32239.
|
 |
|
|
|
|
 |
D.W.Rice,
J.B.Rafferty,
P.J.Artymiuk,
and
R.G.Lloyd
(1997).
Insights into the mechanisms of homologous recombination from the structure of RuvA.
|
| |
Curr Opin Struct Biol,
7,
798-803.
|
 |
|
|
|
|
 |
D.Wang,
and
J.M.Essigmann
(1997).
Kinetics of oxidized cytosine repair by endonuclease III of Escherichia coli.
|
| |
Biochemistry,
36,
8628-8633.
|
 |
|
|
|
|
 |
G.Musco,
A.Kharrat,
G.Stier,
F.Fraternali,
T.J.Gibson,
M.Nilges,
and
A.Pastore
(1997).
The solution structure of the first KH domain of FMR1, the protein responsible for the fragile X syndrome.
|
| |
Nat Struct Biol,
4,
712-716.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.P.Mullen,
and
S.H.Wilson
(1997).
DNA polymerase beta in abasic site repair: a structurally conserved helix-hairpin-helix motif in lesion detection by base excision repair enzymes.
|
| |
Biochemistry,
36,
4713-4717.
|
 |
|
|
|
|
 |
J.Sekiguchi,
and
S.Shuman
(1997).
Nick sensing by vaccinia virus DNA ligase requires a 5' phosphate at the nick and occupancy of the adenylate binding site on the enzyme.
|
| |
J Virol,
71,
9679-9684.
|
 |
|
|
|
|
 |
K.D.Collins
(1997).
Charge density-dependent strength of hydration and biological structure.
|
| |
Biophys J,
72,
65-76.
|
 |
|
|
|
|
 |
L.Augeri,
Y.M.Lee,
A.B.Barton,
and
P.W.Doetsch
(1997).
Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III.
|
| |
Biochemistry,
36,
721-729.
|
 |
|
|
|
|
 |
L.E.Rabow,
and
Y.W.Kow
(1997).
Mechanism of action of base release by Escherichia coli Fpg protein: role of lysine 155 in catalysis.
|
| |
Biochemistry,
36,
5084-5096.
|
 |
|
|
|
|
 |
M.Bjorâs,
L.Luna,
B.Johnsen,
E.Hoff,
T.Haug,
T.Rognes,
and
E.Seeberg
(1997).
Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
|
| |
EMBO J,
16,
6314-6322.
|
 |
|
|
|
|
 |
M.R.Sawaya,
R.Prasad,
S.H.Wilson,
J.Kraut,
and
H.Pelletier
(1997).
Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism.
|
| |
Biochemistry,
36,
11205-11215.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.D.Schärer,
T.Kawate,
P.Gallinari,
J.Jiricny,
and
G.L.Verdine
(1997).
Investigation of the mechanisms of DNA binding of the human G/T glycosylase using designed inhibitors.
|
| |
Proc Natl Acad Sci U S A,
94,
4878-4883.
|
 |
|
|
|
|
 |
P.J.Artymiuk,
T.A.Ceska,
D.Suck,
and
J.R.Sayers
(1997).
Prokaryotic 5'-3' exonucleases share a common core structure with gamma-delta resolvase.
|
| |
Nucleic Acids Res,
25,
4224-4229.
|
 |
|
|
|
|
 |
P.M.Girard,
N.Guibourt,
and
S.Boiteux
(1997).
The Ogg1 protein of Saccharomyces cerevisiae: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity.
|
| |
Nucleic Acids Res,
25,
3204-3211.
|
 |
|
|
|
|
 |
R.Aspinwall,
D.G.Rothwell,
T.Roldan-Arjona,
C.Anselmino,
C.J.Ward,
J.P.Cheadle,
J.R.Sampson,
T.Lindahl,
P.C.Harris,
and
I.D.Hickson
(1997).
Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III.
|
| |
Proc Natl Acad Sci U S A,
94,
109-114.
|
 |
|
|
|
|
 |
R.C.Manuel,
and
R.S.Lloyd
(1997).
Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY.
|
| |
Biochemistry,
36,
11140-11152.
|
 |
|
|
|
|
 |
R.Lu,
H.M.Nash,
and
G.L.Verdine
(1997).
A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer.
|
| |
Curr Biol,
7,
397-407.
|
 |
|
|
|
|
 |
R.S.Lloyd,
and
X.Cheng
(1997).
Mechanistic link between DNA methyltransferases and DNA repair enzymes by base flipping.
|
| |
Biopolymers,
44,
139-151.
|
 |
|
|
|
|
 |
T.A.Rosenquist,
D.O.Zharkov,
and
A.P.Grollman
(1997).
Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase.
|
| |
Proc Natl Acad Sci U S A,
94,
7429-7434.
|
 |
|
|
|
|
 |
T.Lindahl,
P.Karran,
and
R.D.Wood
(1997).
DNA excision repair pathways.
|
| |
Curr Opin Genet Dev,
7,
158-169.
|
 |
|
|
|
|
 |
T.P.Hilbert,
W.Chaung,
R.J.Boorstein,
R.P.Cunningham,
and
G.W.Teebor
(1997).
Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III.
|
| |
J Biol Chem,
272,
6733-6740.
|
 |
|
|
|
|
 |
T.Roldán-Arjona,
Y.F.Wei,
K.C.Carter,
A.Klungland,
C.Anselmino,
R.P.Wang,
M.Augustus,
and
T.Lindahl
(1997).
Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase.
|
| |
Proc Natl Acad Sci U S A,
94,
8016-8020.
|
 |
|
|
|
|
 |
A.Gogos,
J.Cillo,
N.D.Clarke,
and
A.L.Lu
(1996).
Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition.
|
| |
Biochemistry,
35,
16665-16671.
|
 |
|
|
|
|
 |
A.J.Doherty,
L.C.Serpell,
and
C.P.Ponting
(1996).
The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA.
|
| |
Nucleic Acids Res,
24,
2488-2497.
|
 |
|
|
|
|
 |
A.L.Lu,
D.S.Yuen,
and
J.Cillo
(1996).
Catalytic mechanism and DNA substrate recognition of Escherichia coli MutY protein.
|
| |
J Biol Chem,
271,
24138-24143.
|
 |
|
|
|
|
 |
C.P.Ponting,
and
I.D.Kerr
(1996).
A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues.
|
| |
Protein Sci,
5,
914-922.
|
 |
|
|
|
|
 |
E.Hidalgo,
and
B.Demple
(1996).
Activation of SoxR-dependent transcription in vitro by noncatalytic or NifS-mediated assembly of [2Fe-2S] clusters into apo-SoxR.
|
| |
J Biol Chem,
271,
7269-7272.
|
 |
|
|
|
|
 |
H.M.Nash,
S.D.Bruner,
O.D.Schärer,
T.Kawate,
T.A.Addona,
E.Spooner,
W.S.Lane,
and
G.L.Verdine
(1996).
Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily.
|
| |
Curr Biol,
6,
968-980.
|
 |
|
|
|
|
 |
H.Pelletier,
M.R.Sawaya,
W.Wolfle,
S.H.Wilson,
and
J.Kraut
(1996).
Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.
|
| |
Biochemistry,
35,
12742-12761.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.P.Horst,
and
H.J.Fritz
(1996).
Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF.
|
| |
EMBO J,
15,
5459-5469.
|
 |
|
|
|
|
 |
L.Eide,
M.Bjørås,
M.Pirovano,
I.Alseth,
K.G.Berdal,
and
E.Seeberg
(1996).
Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli.
|
| |
Proc Natl Acad Sci U S A,
93,
10735-10740.
|
 |
|
|
|
|
 |
R.C.Manuel,
E.W.Czerwinski,
and
R.S.Lloyd
(1996).
Identification of the structural and functional domains of MutY, an Escherichia coli DNA mismatch repair enzyme.
|
| |
J Biol Chem,
271,
16218-16226.
|
 |
|
|
|
|
 |
T.P.Hilbert,
R.J.Boorstein,
H.C.Kung,
P.H.Bolton,
D.Xing,
R.P.Cunningham,
and
G.W.Teebor
(1996).
Purification of a mammalian homologue of Escherichia coli endonuclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNAse/AP lyase by irreversible cross linking to a thymine glycol-containing oligoxynucleotide.
|
| |
Biochemistry,
35,
2505-2511.
|
 |
|
|
|
|
 |
T.Roldán-Arjona,
C.Anselmino,
and
T.Lindahl
(1996).
Molecular cloning and functional analysis of a Schizosaccharomyces pombe homologue of Escherichia coli endonuclease III.
|
| |
Nucleic Acids Res,
24,
3307-3312.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |