PDBsum entry 2aat

Go to PDB code: 
protein ligands links
Transferase(aminotransferase) PDB id
Protein chain
396 a.a. *
* Residue conservation analysis
PDB id:
Name: Transferase(aminotransferase)
Title: 2.8-angstroms-resolution crystal structure of an active-site aspartate aminotransferase from escherichia coli
Structure: Aspartate aminotransferase. Chain: a. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
2.80Å     R-factor:   0.220    
Authors: D.Smith,S.Almo,M.Toney,D.Ringe
Key ref:
D.L.Smith et al. (1989). 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry, 28, 8161-8167. PubMed id: 2513875 DOI: 10.1021/bi00446a030
30-May-89     Release date:   15-Oct-89    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P00509  (AAT_ECOLI) -  Aspartate aminotransferase
396 a.a.
396 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.  - Aspartate transaminase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate
+ 2-oxoglutarate
= oxaloacetate
+ L-glutamate
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Bound ligand (Het Group name = PMP) matches with 88.24% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   2 terms 
  Biological process     biosynthetic process   4 terms 
  Biochemical function     catalytic activity     8 terms  


DOI no: 10.1021/bi00446a030 Biochemistry 28:8161-8167 (1989)
PubMed id: 2513875  
2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli.
D.L.Smith, S.C.Almo, M.D.Toney, D.Ringe.
The three-dimensional structure of a mutant of the aspartate aminotransferase from Escherichia coli, in which the active-site lysine has been substituted by alanine (K258A), has been determined at 2.8-A resolution by X-ray diffraction. The mutant enzyme contains pyridoxamine phosphate as cofactor. The structure is compared to that of the mitochondrial aspartate aminotransferase. The most striking differences, aside from the absence of the lysine side chain, occur in the positions of the pyridoxamine group and of tryptophan 140.

Literature references that cite this PDB file's key reference

  PubMed id Reference
18922152 J.M.Thornburg, K.K.Nelson, B.F.Clem, A.N.Lane, S.Arumugam, A.Simmons, J.W.Eaton, S.Telang, and J.Chesney (2008).
Targeting aspartate aminotransferase in breast cancer.
  Breast Cancer Res, 10, R84.  
17050531 N.H.Yennawar, M.M.Islam, M.Conway, R.Wallin, and S.M.Hutson (2006).
Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis.
  J Biol Chem, 281, 39660-39671.
PDB codes: 2hdk 2hg8 2hgw 2hgx 2hhf
11967363 E.Deu, K.A.Koch, and J.F.Kirsch (2002).
The role of the conserved Lys68*:Glu265 intersubunit salt bridge in aspartate aminotransferase kinetics: multiple forced covariant amino acid substitutions in natural variants.
  Protein Sci, 11, 1062-1073.  
10906409 F.S.Tahanejad, H.Naderi-Manesh, B.Habibinejad, and M.Mahmoudian (2000).
Homology-based molecular modelling of PLP-dependent histidine decarboxylase from Mmorganella morganii.
  Eur J Med Chem, 35, 567-576.  
10858450 J.Ishijima, T.Nakai, S.Kawaguchi, K.Hirotsu, and S.Kuramitsu (2000).
Free energy requirement for domain movement of an enzyme.
  J Biol Chem, 275, 18939-18945.
PDB codes: 1c9c 1cq6 1cq7 1cq8
10858304 M.A.Rishavy, and W.W.Cleland (2000).
13C and (15)N kinetic isotope effects on the reaction of aspartate aminotransferase and the tyrosine-225 to phenylalanine mutant.
  Biochemistry, 39, 7546-7551.  
10223296 K.A.Denessiouk, A.I.Denesyuk, J.V.Lehtonen, T.Korpela, and M.S.Johnson (1999).
Common structural elements in the architecture of the cofactor-binding domains in unrelated families of pyridoxal phosphate-dependent enzymes.
  Proteins, 35, 250-261.  
10417420 T.P.Ko, S.P.Wu, W.Z.Yang, H.Tsai, and H.S.Yuan (1999).
Crystallization and preliminary crystallographic analysis of the Escherichia coli tyrosine aminotransferase.
  Acta Crystallogr D Biol Crystallogr, 55, 1474-1477.
PDB code: 3tat
  9655342 C.J.Jeffery, T.Barry, S.Doonan, G.A.Petsko, and D.Ringe (1998).
Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.
  Protein Sci, 7, 1380-1387.
PDB code: 1yaa
9660802 S.Kawaguchi, and S.Kuramitsu (1998).
Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases.
  J Biol Chem, 273, 18353-18364.  
9792664 Y.Nobe, S.Kawaguchi, H.Ura, T.Nakai, K.Hirotsu, R.Kato, and S.Kuramitsu (1998).
The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8.
  J Biol Chem, 273, 29554-29564.  
9305893 J.R.Jagath, B.Sharma, N.A.Rao, and H.S.Savithri (1997).
The role of His-134, -147, and -150 residues in subunit assembly, cofactor binding, and catalysis of sheep liver cytosolic serine hydroxymethyltransferase.
  J Biol Chem, 272, 24355-24362.  
9211866 S.Rhee, M.M.Silva, C.C.Hyde, P.H.Rogers, C.M.Metzler, D.E.Metzler, and A.Arnone (1997).
Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate.
  J Biol Chem, 272, 17293-17302.
PDB codes: 1ajr 1ajs
  8636014 R.A.Jensen, and W.Gu (1996).
Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases.
  J Bacteriol, 178, 2161-2171.  
8552589 S.Jones, and J.M.Thornton (1996).
Principles of protein-protein interactions.
  Proc Natl Acad Sci U S A, 93, 13-20.  
  7663334 G.C.Ferreira, U.Vajapey, O.Hafez, G.A.Hunter, and M.J.Barber (1995).
Aminolevulinate synthase: lysine 313 is not essential for binding the pyridoxal phosphate cofactor but is essential for catalysis.
  Protein Sci, 4, 1001-1006.  
7851426 R.A.Vacca, P.Christen, V.N.Malashkevich, J.N.Jansonius, and E.Sandmeier (1995).
Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.
  Eur J Biochem, 227, 481-487.
PDB code: 1ari
  7703851 Y.Matsuo, and K.Nishikawa (1994).
Protein structural similarities predicted by a sequence-structure compatibility method.
  Protein Sci, 3, 2055-2063.  
8436109 M.Ziak, J.Jäger, V.N.Malashkevich, H.Gehring, R.Jaussi, J.N.Jansonius, and P.Christen (1993).
Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties.
  Eur J Biochem, 211, 475-484.  
1572361 B.Leistler, M.Herold, and K.Kirschner (1992).
Collapsed intermediates in the reconstitution of dimeric aspartate aminotransferase from Escherichia coli.
  Eur J Biochem, 205, 603-611.  
  1339023 M.D.Toney, and J.F.Kirsch (1992).
Brønsted analysis of aspartate aminotransferase via exogenous catalysis of reactions of an inactive mutant.
  Protein Sci, 1, 107-119.  
2162646 J.F.Kirsch, and M.D.Toney (1990).
Brønsted analysis of enzymatic proton transfer reactions through site-directed mutagenesis.
  Ann N Y Acad Sci, 585, 48-57.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.