spacer
spacer

PDBsum entry 2a1b

Go to PDB code: 
protein Protein-protein interface(s) links
Carboxysome PDB id
2a1b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 6 more) 101 a.a. *
* Residue conservation analysis
PDB id:
2a1b
Name: Carboxysome
Title: Carboxysome shell protein ccmk2
Structure: Carbon dioxide concentrating mechanism protein ccmk homolog 2. Chain: a, b, c, d, e, f, g, h, i, j, k, l. Synonym: ccmk2. Engineered: yes. Mutation: yes
Source: Synechocystis sp.. Organism_taxid: 1148. Strain: pcc 6803. Gene: ccmk2. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Hexamer (from PQS)
Resolution:
2.90Å     R-factor:   0.313     R-free:   0.346
Authors: C.A.Kerfeld,M.R.Sawaya,S.Tanaka,C.V.Nguyen,M.Phillips,M.Beeby, T.O.Yeates
Key ref:
C.A.Kerfeld et al. (2005). Protein structures forming the shell of primitive bacterial organelles. Science, 309, 936-938. PubMed id: 16081736 DOI: 10.1126/science.1113397
Date:
20-Jun-05     Release date:   09-Aug-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P72761  (CCMK2_SYNY3) -  Carboxysome shell protein CcmK2 from Synechocystis sp. (strain PCC 6803 / Kazusa)
Seq:
Struc:
103 a.a.
101 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1126/science.1113397 Science 309:936-938 (2005)
PubMed id: 16081736  
 
 
Protein structures forming the shell of primitive bacterial organelles.
C.A.Kerfeld, M.R.Sawaya, S.Tanaka, C.V.Nguyen, M.Phillips, M.Beeby, T.O.Yeates.
 
  ABSTRACT  
 
Bacterial microcompartments are primitive organelles composed entirely of protein subunits. Genomic sequence databases reveal the widespread occurrence of microcompartments across diverse microbes. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. We report three-dimensional crystal structures of multiple carboxysome shell proteins, revealing a hexameric unit as the basic microcompartment building block and showing how these hexamers assemble to form flat facets of the polyhedral shell. The structures suggest how molecular transport across the shell may be controlled and how structural variations might govern the assembly and architecture of these subcellular compartments.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. (A) The three-dimensional crystal structure of BMC domain protein, CcmK4, determined at a resolution of 1.8 Å. (B) The concave surface of the CcmK4 hexamer. CcmK4 monomers are colored alternately blue and gray, with all six C termini in green. Also shown is the CcmK2 C terminus (red) in its corresponding position after a superposition of CcmK2 and CcmK4 hexamers. The superposition (not shown) indicates that the backbones of the two hexamers are nearly identical up to residues Pro97 (CcmK4)/Glu95 (CcmK2). The structural differences at the C termini (labeled) suggest one reason why CcmK4 packing is limited to chains of hexamers. In CcmK4, the C termini extend outward, toward the corners of the hexamer. These are the positions where three hexamers meet in the CcmK2 sheet but not in the CcmK4 structures. (C and D) A close-up view of the pores (concave side) formed at the six-fold axis of symmetry in the CcmK2 (C) and CcmK4 (D) hexamers. The surfaces are colored according to electrostatic potential, with blue positive and red negative. Positively charged, conserved amino acid side chains lining the pore are highlighted (Lys36 in CcmK2, Arg38 in CcmK4). This figure and Fig. 4 were illustrated with PyMOL (32).
Figure 4.
Fig. 4. Crystal packing of BMC domain proteins in molecular layers. (A) CcmK2 hexamers packed in uniform orientations (convex face shown). (B) CcmK4 hexamers (crystal form 2) packed in strips of alternating orientation. In the side view of each sheet, arrows mark the positions of the pores.
 
  The above figures are reprinted by permission from the AAAs: Science (2005, 309, 936-938) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20953603 N.Urano, M.Kataoka, T.Ishige, S.Kita, K.Sakamoto, and S.Shimizu (2011).
Genetic analysis around aminoalcohol dehydrogenase gene of Rhodococcus erythropolis MAK154: a putative GntR transcription factor in transcriptional regulation.
  Appl Microbiol Biotechnol, 89, 739-746.  
21315581 T.O.Yeates, M.C.Thompson, and T.A.Bobik (2011).
The protein shells of bacterial microcompartment organelles.
  Curr Opin Struct Biol, 21, 223-231.  
20825353 C.A.Kerfeld, S.Heinhorst, and G.C.Cannon (2010).
Bacterial microcompartments.
  Annu Rev Microbiol, 64, 391-408.  
20308536 C.Fan, S.Cheng, Y.Liu, C.M.Escobar, C.S.Crowley, R.E.Jefferson, T.O.Yeates, and T.A.Bobik (2010).
Short N-terminal sequences package proteins into bacterial microcompartments.
  Proc Natl Acad Sci U S A, 107, 7509-7514.  
19925807 C.V.Iancu, D.M.Morris, Z.Dou, S.Heinhorst, G.C.Cannon, and G.J.Jensen (2010).
Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells.
  J Mol Biol, 396, 105-117.  
20203050 D.F.Savage, B.Afonso, A.H.Chen, and P.A.Silver (2010).
Spatially ordered dynamics of the bacterial carbon fixation machinery.
  Science, 327, 1258-1261.  
20133749 K.L.Peña, S.E.Castel, C.de Araujo, G.S.Espie, and M.S.Kimber (2010).
Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM.
  Proc Natl Acad Sci U S A, 107, 2455-2460.
PDB codes: 3kwc 3kwd 3kwe
20008391 S.C.Morris (2010).
Evolution: like any other science it is predictable.
  Philos Trans R Soc Lond B Biol Sci, 365, 133-145.  
20400692 S.Heinhorst, and G.C.Cannon (2010).
Addressing microbial organelles: a short peptide directs enzymes to the interior.
  Proc Natl Acad Sci U S A, 107, 7627-7628.  
20044574 S.Tanaka, M.R.Sawaya, and T.O.Yeates (2010).
Structure and mechanisms of a protein-based organelle in Escherichia coli.
  Science, 327, 81-84.
PDB codes: 3i6p 3i71 3i82 3i87 3i96 3ia0
20192762 T.O.Yeates, C.S.Crowley, and S.Tanaka (2010).
Bacterial microcompartment organelles: protein shell structure and evolution.
  Annu Rev Biophys, 39, 185-205.  
20660228 T.Yamano, T.Tsujikawa, K.Hatano, S.Ozawa, Y.Takahashi, and H.Fukuzawa (2010).
Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
  Plant Cell Physiol, 51, 1453-1468.  
19487728 D.J.Scanlan, M.Ostrowski, S.Mazard, A.Dufresne, L.Garczarek, W.R.Hess, A.F.Post, M.Hagemann, I.Paulsen, and F.Partensky (2009).
Ecological genomics of marine picocyanobacteria.
  Microbiol Mol Biol Rev, 73, 249-299.  
19844578 F.Cai, B.B.Menon, G.C.Cannon, K.J.Curry, J.M.Shively, and S.Heinhorst (2009).
The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier.
  PLoS One, 4, e7521.  
19844993 K.A.Dryden, C.S.Crowley, S.Tanaka, T.O.Yeates, and M.Yeager (2009).
Two-dimensional crystals of carboxysome shell proteins recapitulate the hexagonal packing of three-dimensional crystals.
  Protein Sci, 18, 2629-2635.  
  19194002 K.Nikolakakis, A.Ohtaki, K.Newton, A.Chworos, and M.Sagermann (2009).
Preliminary structural investigations of the Eut-L shell protein of the ethanolamine ammonia-lyase metabolosome of Escherichia coli.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 128-132.  
  19177352 M.Beeby, T.A.Bobik, and T.O.Yeates (2009).
Exploiting genomic patterns to discover new supramolecular protein assemblies.
  Protein Sci, 18, 69-79.  
19451619 M.Sagermann, A.Ohtaki, and K.Nikolakakis (2009).
Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment.
  Proc Natl Acad Sci U S A, 106, 8883-8887.
PDB code: 3gfh
19523676 O.Pornillos, B.K.Ganser-Pornillos, B.N.Kelly, Y.Hua, F.G.Whitby, C.D.Stout, W.I.Sundquist, C.P.Hill, and M.Yeager (2009).
X-ray structures of the hexameric building block of the HIV capsid.
  Cell, 137, 1282-1292.
PDB codes: 3gv2 3h47 3h4e
  19177356 S.Tanaka, M.R.Sawaya, M.Phillips, and T.O.Yeates (2009).
Insights from multiple structures of the shell proteins from the beta-carboxysome.
  Protein Sci, 18, 108-120.
PDB codes: 3cim 3dn9 3dnc
19690376 Y.Tsai, M.R.Sawaya, and T.O.Yeates (2009).
Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C.
  Acta Crystallogr D Biol Crystallogr, 65, 980-988.
PDB code: 3h8y
18974784 B.B.Menon, Z.Dou, S.Heinhorst, J.M.Shively, and G.C.Cannon (2008).
Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species.
  PLoS ONE, 3, e3570.  
18786396 C.S.Crowley, M.R.Sawaya, T.A.Bobik, and T.O.Yeates (2008).
Structure of the PduU shell protein from the Pdu microcompartment of Salmonella.
  Structure, 16, 1324-1332.
PDB code: 3cgi
18469107 D.D.Sriramulu, M.Liang, D.Hernandez-Romero, E.Raux-Deery, H.Lünsdorf, J.B.Parsons, M.J.Warren, and M.B.Prentice (2008).
Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation.
  J Bacteriol, 190, 4559-4567.  
18355161 D.M.Morris, and G.J.Jensen (2008).
Toward a biomechanical understanding of whole bacterial cells.
  Annu Rev Biochem, 77, 583-613.  
18296526 E.M.Sampson, and T.A.Bobik (2008).
Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate.
  J Bacteriol, 190, 2966-2971.  
17899012 F.Cai, S.Heinhorst, J.M.Shively, and G.C.Cannon (2008).
Transcript analysis of the Halothiobacillus neapolitanus cso operon.
  Arch Microbiol, 189, 141-150.  
19172747 M.Sutter, D.Boehringer, S.Gutmann, S.Günther, D.Prangishvili, M.J.Loessner, K.O.Stetter, E.Weber-Ban, and N.Ban (2008).
Structural basis of enzyme encapsulation into a bacterial nanocompartment.
  Nat Struct Mol Biol, 15, 939-947.
PDB code: 3dkt
18311171 P.Hunter (2008).
Not so simple after all. A renaissance of research into prokaryotic evolution and cell structure.
  EMBO Rep, 9, 224-226.  
18725290 R.J.Conrado, J.D.Varner, and M.P.DeLisa (2008).
Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy.
  Curr Opin Biotechnol, 19, 492-499.  
18937343 S.Cheng, Y.Liu, C.S.Crowley, T.O.Yeates, and T.A.Bobik (2008).
Bacterial microcompartments: their properties and paradoxes.
  Bioessays, 30, 1084-1095.  
18248510 S.Fathinejad, J.M.Steiner, S.Reipert, M.Marchetti, G.Allmaier, S.C.Burey, N.Ohnishi, H.Fukuzawa, W.Löffelhardt, and H.J.Bohnert (2008).
A carboxysomal carbon-concentrating mechanism in the cyanelles of the 'coelacanth' of the algal world, Cyanophora paradoxa?
  Physiol Plant, 133, 27-32.  
18769466 S.Heinhorst, and G.C.Cannon (2008).
A new, leaner and meaner bacterial organelle.
  Nat Struct Mol Biol, 15, 897-898.  
17993516 S.S.Cot, A.K.So, and G.S.Espie (2008).
A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria.
  J Bacteriol, 190, 936-945.  
18292340 S.Tanaka, C.A.Kerfeld, M.R.Sawaya, F.Cai, S.Heinhorst, G.C.Cannon, and T.O.Yeates (2008).
Atomic-level models of the bacterial carboxysome shell.
  Science, 319, 1083-1086.
PDB codes: 2qw7 2rcf 3bn4
18679172 T.O.Yeates, C.A.Kerfeld, S.Heinhorst, G.C.Cannon, and J.M.Shively (2008).
Protein-based organelles in bacteria: carboxysomes and related microcompartments.
  Nat Rev Microbiol, 6, 681-691.  
17449628 C.S.Ting, C.Hsieh, S.Sundararaman, C.Mannella, and M.Marko (2007).
Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium.
  J Bacteriol, 189, 4485-4493.  
17669419 C.V.Iancu, H.J.Ding, D.M.Morris, D.P.Dias, A.D.Gonzales, A.Martino, and G.J.Jensen (2007).
The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography.
  J Mol Biol, 372, 764-773.  
17588214 F.Forouhar, A.Kuzin, J.Seetharaman, I.Lee, W.Zhou, M.Abashidze, Y.Chen, W.Yong, H.Janjua, Y.Fang, D.Wang, K.Cunningham, R.Xiao, T.B.Acton, E.Pichersky, D.F.Klessig, C.W.Porter, G.T.Montelione, and L.Tong (2007).
Functional insights from structural genomics.
  J Struct Funct Genomics, 8, 37-44.
PDB codes: 1rty 1sqs 1tm0 1zbp 2hd3 2nv4 2oys
17497225 K.Roberts, E.Granum, R.C.Leegood, and J.A.Raven (2007).
Carbon acquisition by diatoms.
  Photosynth Res, 93, 79-88.  
17921268 L.P.Wackett, J.A.Frias, J.L.Seffernick, D.J.Sukovich, and S.M.Cameron (2007).
Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1.
  Appl Environ Microbiol, 73, 7192-7198.  
17518518 Y.Tsai, M.R.Sawaya, G.C.Cannon, F.Cai, E.B.Williams, S.Heinhorst, C.A.Kerfeld, and T.O.Yeates (2007).
Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome.
  PLoS Biol, 5, e144.
PDB codes: 2ewh 2g13
16879649 H.Yang, K.H.To, S.J.Aguila, and J.H.Miller (2006).
Metagenomic DNA fragments that affect Escherichia coli mutational pathways.
  Mol Microbiol, 61, 960-977.  
17028023 M.F.Schmid, A.M.Paredes, H.A.Khant, F.Soyer, H.C.Aldrich, W.Chiu, and J.M.Shively (2006).
Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography.
  J Mol Biol, 364, 526-535.  
16980456 R.Seshadri, S.W.Joseph, A.K.Chopra, J.Sha, J.Shaw, J.Graf, D.Haft, M.Wu, Q.Ren, M.J.Rosovitz, R.Madupu, L.Tallon, M.Kim, S.Jin, H.Vuong, O.C.Stine, A.Ali, A.J.Horneman, and J.F.Heidelberg (2006).
Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades.
  J Bacteriol, 188, 8272-8282.  
17012396 S.Heinhorst, E.B.Williams, F.Cai, C.D.Murin, J.M.Shively, and G.C.Cannon (2006).
Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus.
  J Bacteriol, 188, 8087-8094.  
16525780 T.A.Bobik (2006).
Polyhedral organelles compartmenting bacterial metabolic processes.
  Appl Microbiol Biotechnol, 70, 517-525.  
16291677 S.R.Brinsmade, T.Paldon, and J.C.Escalante-Semerena (2005).
Minimal functions and physiological conditions required for growth of salmonella enterica on ethanolamine in the absence of the metabolosome.
  J Bacteriol, 187, 8039-8046.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer