spacer
spacer

PDBsum entry 2itp

Go to PDB code: 
protein ligands links
Transferase PDB id
2itp
Jmol
Contents
Protein chain
305 a.a. *
Ligands
AEE
Waters ×65
* Residue conservation analysis
PDB id:
2itp
Name: Transferase
Title: Crystal structure of egfr kinase domain g719s mutation in complex with aee788
Structure: Epidermal growth factor receptor precursor. Chain: a. Fragment: kinase domain, residues 696-1022. Synonym: receptor tyrosine-protein kinase erbb-1. Engineered: yes. Mutation: yes. Other_details: egfr 696-1022 g719s
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9. Other_details: egfr 696-1022 g719s
Resolution:
2.74Å     R-factor:   0.200     R-free:   0.255
Authors: C.-H.Yun,T.J.Boggon,Y.Li,S.Woo,H.Greulich,M.Meyerson, M.J.Eck
Key ref:
C.H.Yun et al. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217-227. PubMed id: 17349580 DOI: 10.1016/j.ccr.2006.12.017
Date:
25-May-06     Release date:   03-Apr-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00533  (EGFR_HUMAN) -  Epidermal growth factor receptor
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1210 a.a.
305 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.1  - Receptor protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate
ATP
+ [protein]-L-tyrosine
= ADP
+ [protein]-L-tyrosine phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     protein phosphorylation   1 term 
  Biochemical function     transferase activity, transferring phosphorus-containing groups     4 terms  

 

 
    reference    
 
 
DOI no: 10.1016/j.ccr.2006.12.017 Cancer Cell 11:217-227 (2007)
PubMed id: 17349580  
 
 
Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity.
C.H.Yun, T.J.Boggon, Y.Li, M.S.Woo, H.Greulich, M.Meyerson, M.J.Eck.
 
  ABSTRACT  
 
Mutations in the EGFR kinase are a cause of non-small-cell lung cancer. To understand their mechanism of activation and effects on drug binding, we studied the kinetics of the L858R and G719S mutants and determined their crystal structures with inhibitors including gefitinib, AEE788, and a staurosporine. We find that the mutations activate the kinase by disrupting autoinhibitory interactions, and that they accelerate catalysis as much as 50-fold in vitro. Structures of inhibitors in complex with both wild-type and mutant kinases reveal similar binding modes for gefitinib and AEE788, but a marked rotation of the staurosporine in the G719S mutant. Strikingly, direct binding measurements show that gefitinib binds 20-fold more tightly to the L858R mutant than to the wild-type enzyme.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Schematic Drawings of the EGFR Inhibitors Discussed Here
Inhibitors are drawn in a consistent orientation approximately reflecting their conformations when bound to the EGFR kinase (Figure 4).
Figure 4.
Figure 4. Drug Binding Modes in the Wild-Type and Mutant EGFR Kinase
The binding modes of gefitinib (A, C, and E) and AEE788 (B, D, and F) are compared in the wild-type (yellow), L858R (green), and G719S (blue) kinases. Key side chains are labeled, the inhibitors are shown in stick form with carbons colored yellow, and hydrogen bonds are indicated with dashed lines. Compare binding of different inhibitors to the same mutant within rows and binding of the same inhibitor among wild-type and mutants within columns. Binding modes of both compounds are essentially the same in all three structures. Note also the closely corresponding orientations of the pyrrolopyrimidine scaffold in the AEE788 complexes and the quinazoline core in the gefitinib complexes. Additionally, the phenylethyl amine moiety in AEE788 occupies the same space as the aniline substituent in the gefitinib and erlotinib complexes.
 
  The above figures are reprinted by permission from Cell Press: Cancer Cell (2007, 11, 217-227) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20887192 G.da Cunha Santos, F.A.Shepherd, and M.S.Tsao (2011).
EGFR mutations and lung cancer.
  Annu Rev Pathol, 6, 49-69.  
21220318 H.H.Yeh, K.Ogawa, J.Balatoni, U.Mukhapadhyay, A.Pal, C.Gonzalez-Lepera, A.Shavrin, S.Soghomonyan, L.Flores, D.Young, A.Y.Volgin, A.M.Najjar, V.Krasnykh, W.Tong, M.M.Alauddin, and J.G.Gelovani (2011).
Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT.
  Proc Natl Acad Sci U S A, 108, 1603-1608.  
21429632 H.M.Shallal, and W.A.Russu (2011).
Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives.
  Eur J Med Chem, 46, 2043-2057.  
21822280 L.Z.Mi, C.Lu, Z.Li, N.Nishida, T.Walz, and T.A.Springer (2011).
Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor.
  Nat Struct Mol Biol, 18, 984-989.  
20938978 M.Mustafa, A.Mirza, and N.Kannan (2011).
Conformational regulation of the EGFR kinase core by the juxtamembrane and C-terminal tail: a molecular dynamics study.
  Proteins, 79, 99.  
21474065 N.Jura, X.Zhang, N.F.Endres, M.A.Seeliger, T.Schindler, and J.Kuriyan (2011).
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms.
  Mol Cell, 42, 9.  
21132006 T.Harada, A.Lopez-Chavez, L.Xi, M.Raffeld, Y.Wang, and G.Giaccone (2011).
Characterization of epidermal growth factor receptor mutations in non-small-cell lung cancer patients of African-American ancestry.
  Oncogene, 30, 1744-1752.  
21233671 W.A.Cooper, S.O'toole, M.Boyer, L.Horvath, and A.Mahar (2011).
What's new in non-small cell lung cancer for pathologists: the importance of accurate subtyping, EGFR mutations and ALK rearrangements.
  Pathology, 43, 103-115.  
21125677 W.Pao, A.J.Iafrate, and Z.Su (2011).
Genetically informed lung cancer medicine.
  J Pathol, 223, 230-240.  
21333004 Y.Naruo, T.Nagashima, R.Ushikoshi-Nakayama, Y.Saeki, T.Nakakuki, T.Naka, H.Tanaka, S.F.Tsai, and M.Okada-Hatakeyama (2011).
Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity.
  BMC Syst Biol, 5, 29.  
22101934 Z.Wang, P.A.Longo, M.K.Tarrant, K.Kim, S.Head, D.J.Leahy, and P.A.Cole (2011).
Mechanistic insights into the activation of oncogenic forms of EGF receptor.
  Nat Struct Mol Biol, 18, 1388-1393.  
20351256 F.Shi, S.E.Telesco, Y.Liu, R.Radhakrishnan, and M.A.Lemmon (2010).
ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.
  Proc Natl Acad Sci U S A, 107, 7692-7697.
PDB code: 3lmg
20739887 I.Vivanco, and I.K.Mellinghoff (2010).
Epidermal growth factor receptor inhibitors in oncology.
  Curr Opin Oncol, 22, 573-578.  
19997736 L.C.Heukamp, and R.Büttner (2010).
[Molecular diagnostics in lung carcinoma for therapy stratification]
  Pathologe, 31, 22-28.  
21053345 L.Ju, C.Zhou, W.Li, and L.Yan (2010).
Integrin beta1 over-expression associates with resistance to tyrosine kinase inhibitor gefitinib in non-small cell lung cancer.
  J Cell Biochem, 111, 1565-1574.  
20015198 L.Paz-Ares, D.Soulières, I.Melezínek, J.Moecks, L.Keil, T.Mok, R.Rosell, and B.Klughammer (2010).
Clinical outcomes in non-small-cell lung cancer patients with EGFR mutations: pooled analysis.
  J Cell Mol Med, 14, 51-69.  
20026433 M.J.Eck, and C.H.Yun (2010).
Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer.
  Biochim Biophys Acta, 1804, 559-566.  
20406974 M.J.Lazzara, K.Lane, R.Chan, P.J.Jasper, M.B.Yaffe, P.K.Sorger, T.Jacks, B.G.Neel, and D.A.Lauffenburger (2010).
Impaired SHP2-mediated extracellular signal-regulated kinase activation contributes to gefitinib sensitivity of lung cancer cells with epidermal growth factor receptor-activating mutations.
  Cancer Res, 70, 3843-3850.  
20336234 O.A.Gani, and R.A.Engh (2010).
Protein kinase inhibition of clinically important staurosporine analogues.
  Nat Prod Rep, 27, 489-498.  
20520657 R.Huang, I.Martinez-Ferrando, and P.A.Cole (2010).
Enhanced interrogation: emerging strategies for cell signaling inhibition.
  Nat Struct Mol Biol, 17, 646-649.  
  20044834 R.Krishnamurty, and D.J.Maly (2010).
Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors.
  ACS Chem Biol, 5, 121-138.  
19455431 R.Rajasekaran, and R.Sethumadhavan (2010).
In silico identification of significant detrimental missense mutations of EGFR and their effect with 4-anilinoquinazoline-based drugs.
  Appl Biochem Biotechnol, 160, 1723-1733.  
20966921 W.Pao, and J.Chmielecki (2010).
Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer.
  Nat Rev Cancer, 10, 760-774.  
20810646 W.W.Chen, M.Niepel, and P.K.Sorger (2010).
Classic and contemporary approaches to modeling biochemical reactions.
  Genes Dev, 24, 1861-1875.  
20140937 W.W.Li, J.J.Chen, R.L.Zheng, W.Q.Zhang, Z.X.Cao, L.L.Yang, X.Y.Qing, L.X.Zhou, L.Yang, L.D.Yu, L.J.Chen, Y.Q.Wei, and S.Y.Yang (2010).
Taking quinazoline as a general support-Nog to design potent and selective kinase inhibitors: application to FMS-like tyrosine kinase 3.
  ChemMedChem, 5, 513-516.  
20428531 Y.Lu, Y.Wang, and W.Zhu (2010).
Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design.
  Phys Chem Chem Phys, 12, 4543-4551.  
  21165163 Z.Zhang, A.L.Stiegler, T.J.Boggon, S.Kobayashi, and B.Halmos (2010).
EGFR-mutated lung cancer: a paradigm of molecular oncology.
  Oncotarget, 1, 497-514.  
19186126 A.Dixit, A.Torkamani, N.J.Schork, and G.Verkhivker (2009).
Computational modeling of structurally conserved cancer mutations in the RET and MET kinases: the impact on protein structure, dynamics, and stability.
  Biophys J, 96, 858-874.  
19714203 A.Dixit, and G.M.Verkhivker (2009).
Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.
  PLoS Comput Biol, 5, e1000487.  
19834613 A.Dixit, L.Yi, R.Gowthaman, A.Torkamani, N.J.Schork, and G.M.Verkhivker (2009).
Sequence and structure signatures of cancer mutation hotspots in protein kinases.
  PLoS One, 4, e7485.  
19114556 A.Gárriz, H.Qiu, M.Dey, E.J.Seo, T.E.Dever, and A.G.Hinnebusch (2009).
A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2.
  Mol Cell Biol, 29, 1592-1607.  
19173306 A.Papakyriakou, D.Vourloumis, F.Tzortzatou-Stathopoulou, and M.Karpusas (2009).
Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation.
  Proteins, 76, 375-386.  
19081671 A.Torkamani, G.Verkhivker, and N.J.Schork (2009).
Cancer driver mutations in protein kinase genes.
  Cancer Lett, 281, 117-127.  
19305428 B.M.Chung, M.Dimri, M.George, A.L.Reddi, G.Chen, V.Band, and H.Band (2009).
The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants.
  Oncogene, 28, 1821-1832.  
19518076 C.Qiu, M.K.Tarrant, T.Boronina, P.A.Longo, J.M.Kavran, R.N.Cole, P.A.Cole, and D.J.Leahy (2009).
In vitro enzymatic characterization of near full length EGFR in activated and inhibited states.
  Biochemistry, 48, 6624-6632.  
19098003 D.Tvorogov, M.Sundvall, K.Kurppa, M.Hollmén, S.Repo, M.S.Johnson, and K.Elenius (2009).
Somatic mutations of ErbB4: selective loss-of-function phenotype affecting signal transduction pathways in cancer.
  J Biol Chem, 284, 5582-5591.  
19602593 H.J.Liao, and G.Carpenter (2009).
Cetuximab/C225-induced intracellular trafficking of epidermal growth factor receptor.
  Cancer Res, 69, 6179-6183.  
19296866 L.N.Johnson (2009).
Protein kinase inhibitors: contributions from structure to clinical compounds.
  Q Rev Biophys, 42, 1.  
  19759520 L.Regales, Y.Gong, R.Shen, E.de Stanchina, I.Vivanco, A.Goel, J.A.Koutcher, M.Spassova, O.Ouerfelli, I.K.Mellinghoff, M.F.Zakowski, K.A.Politi, and W.Pao (2009).
Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer.
  J Clin Invest, 119, 3000-3010.  
19451690 M.L.Sos, K.Michel, T.Zander, J.Weiss, P.Frommolt, M.Peifer, D.Li, R.Ullrich, M.Koker, F.Fischer, T.Shimamura, D.Rauh, C.Mermel, S.Fischer, I.Stückrath, S.Heynck, R.Beroukhim, W.Lin, W.Winckler, K.Shah, T.LaFramboise, W.F.Moriarty, M.Hanna, L.Tolosi, J.Rahnenführer, R.Verhaak, D.Chiang, G.Getz, M.Hellmich, J.Wolf, L.Girard, M.Peyton, B.A.Weir, T.H.Chen, H.Greulich, J.Barretina, G.I.Shapiro, L.A.Garraway, A.F.Gazdar, J.D.Minna, M.Meyerson, K.K.Wong, and R.K.Thomas (2009).
Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions.
  J Clin Invest, 119, 1727-1740.  
19560417 M.Red Brewer, S.H.Choi, D.Alvarado, K.Moravcevic, A.Pozzi, M.A.Lemmon, and G.Carpenter (2009).
The juxtamembrane region of the EGF receptor functions as an activation domain.
  Mol Cell, 34, 641-651.
PDB code: 3gop
19563760 N.Jura, N.F.Endres, K.Engel, S.Deindl, R.Das, M.H.Lamers, D.E.Wemmer, X.Zhang, and J.Kuriyan (2009).
Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.
  Cell, 137, 1293-1307.
PDB code: 3gt8
  20622997 Q.Liu, C.Thoreen, J.Wang, D.Sabatini, and N.S.Gray (2009).
mTOR Mediated Anti-Cancer Drug Discovery.
  Drug Discov Today Ther Strateg, 6, 47-55.  
18761339 R.Bose, and X.Zhang (2009).
The ErbB kinase domain: structural perspectives into kinase activation and inhibition.
  Exp Cell Res, 315, 649-658.  
19339067 R.L.van Montfort, and P.Workman (2009).
Structure-based design of molecular cancer therapeutics.
  Trends Biotechnol, 27, 315-328.  
19673887 S.Ozawa, Y.Kato, S.Ito, R.Komori, N.Shiiki, K.Tsukinoki, S.Ozono, Y.Maehata, T.Taguchi, Y.Imagawa-Ishiguro, M.Tsukuda, E.Kubota, and R.Hata (2009).
Restoration of BRAK / CXCL14 gene expression by gefitinib is associated with antitumor efficacy of the drug in head and neck squamous cell carcinoma.
  Cancer Sci, 100, 2202-2209.  
19627157 T.E.Balius, and R.C.Rizzo (2009).
Quantitative prediction of fold resistance for inhibitors of EGFR.
  Biochemistry, 48, 8435-8448.  
20011534 W.Lee, Y.Zhang, K.Mukhyala, R.A.Lazarus, and Z.Zhang (2009).
Bi-directional SIFT predicts a subset of activating mutations.
  PLoS One, 4, e8311.  
19156131 W.W.Chen, B.Schoeberl, P.J.Jasper, M.Niepel, U.B.Nielsen, D.A.Lauffenburger, and P.K.Sorger (2009).
Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data.
  Mol Syst Biol, 5, 239.  
20033049 W.Zhou, D.Ercan, L.Chen, C.H.Yun, D.Li, M.Capelletti, A.B.Cortot, L.Chirieac, R.E.Iacob, R.Padera, J.R.Engen, K.K.Wong, M.J.Eck, N.S.Gray, and P.A.Jänne (2009).
Novel mutant-selective EGFR kinase inhibitors against EGFR T790M.
  Nature, 462, 1070-1074.
PDB code: 3ika
19657272 Y.Rukazenkov, G.Speake, G.Marshall, J.Anderton, B.R.Davies, R.W.Wilkinson, D.Mark Hickinson, and A.Swaisland (2009).
Epidermal growth factor receptor tyrosine kinase inhibitors: similar but different?
  Anticancer Drugs, 20, 856-866.  
18180459 A.Guo, J.Villén, J.Kornhauser, K.A.Lee, M.P.Stokes, K.Rikova, A.Possemato, J.Nardone, G.Innocenti, R.Wetzel, Y.Wang, J.MacNeill, J.Mitchell, S.P.Gygi, J.Rush, R.D.Polakiewicz, and M.J.Comb (2008).
Signaling networks assembled by oncogenic EGFR and c-Met.
  Proc Natl Acad Sci U S A, 105, 692-697.  
18754049 A.Weyergang, O.Kaalhus, and K.Berg (2008).
Photodynamic targeting of EGFR does not predict the treatment outcome in combination with the EGFR tyrosine kinase inhibitor Tyrphostin AG1478.
  Photochem Photobiol Sci, 7, 1032-1040.  
18493974 A.Wissner, and T.S.Mansour (2008).
The development of HKI-272 and related compounds for the treatment of cancer.
  Arch Pharm (Weinheim), 341, 465-477.  
18493651 B.G.Perera, and D.J.Maly (2008).
Design, synthesis and characterization of "clickable" 4-anilinoquinazoline kinase inhibitors.
  Mol Biosyst, 4, 542-550.  
18227510 C.H.Yun, K.E.Mengwasser, A.V.Toms, M.S.Woo, H.Greulich, K.K.Wong, M.Meyerson, and M.J.Eck (2008).
The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP.
  Proc Natl Acad Sci U S A, 105, 2070-2075.
PDB codes: 2jit 2jiu 2jiv
  19137110 C.Willmore-Payne, J.A.Holden, C.T.Wittwer, and L.J.Layfield (2008).
The Use of EGFR Exon 19 and 21 Unlabeled DNA Probes to Screen for Activating Mutations in Non-Small Cell Lung Cancer.
  J Biomol Tech, 19, 217-224.  
19562083 D.E.Gerber (2008).
EGFR Inhibition in the Treatment of Non-Small Cell Lung Cancer.
  Drug Dev Res, 69, 359-372.  
18287036 E.R.Wood, L.M.Shewchuk, B.Ellis, P.Brignola, R.L.Brashear, T.R.Caferro, S.H.Dickerson, H.D.Dickson, K.H.Donaldson, M.Gaul, R.J.Griffin, A.M.Hassell, B.Keith, R.Mullin, K.G.Petrov, M.J.Reno, D.W.Rusnak, S.M.Tadepalli, J.C.Ulrich, C.D.Wagner, D.E.Vanderwall, A.G.Waterson, J.D.Williams, W.L.White, and D.E.Uehling (2008).
6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases.
  Proc Natl Acad Sci U S A, 105, 2773-2778.
PDB code: 2r4b
18573086 K.M.Ferguson (2008).
Structure-based view of epidermal growth factor receptor regulation.
  Annu Rev Biophys, 37, 353-373.  
18564139 K.Ohashi, K.Rai, Y.Fujiwara, M.Osawa, S.Hirano, K.Takata, E.Kondo, T.Yoshino, M.Takata, M.Tanimoto, and K.Kiura (2008).
Induction of lung adenocarcinoma in transgenic mice expressing activated EGFR driven by the SP-C promoter.
  Cancer Sci, 99, 1747-1753.  
17716025 L.V.Sequist, and T.J.Lynch (2008).
EGFR Tyrosine Kinase Inhibitors in Lung Cancer: An Evolving Story.
  Annu Rev Med, 59, 429-442.  
  19037833 M.Arkin, and M.M.Moasser (2008).
HER-2-directed, small-molecule antagonists.
  Curr Opin Investig Drugs, 9, 1264-1276.  
18794843 M.Azam, M.A.Seeliger, N.S.Gray, J.Kuriyan, and G.Q.Daley (2008).
Activation of tyrosine kinases by mutation of the gatekeeper threonine.
  Nat Struct Mol Biol, 15, 1109-1118.
PDB codes: 3dqw 3dqx
18259690 M.J.Wieduwilt, and M.M.Moasser (2008).
The epidermal growth factor receptor family: biology driving targeted therapeutics.
  Cell Mol Life Sci, 65, 1566-1584.  
18628075 R.González Manzano, E.Martínez Navarro, E.Eugenieva, F.J.Fernández Morejón, J.Farré, and A.Brugarolas (2008).
A novel EGFR nonsense mutation in a non-small-cell lung cancer (NSCLC) patient who did not derive any clinical benefit with combination chemotherapy and erlotinib.
  Clin Transl Oncol, 10, 442-444.  
18055465 S.F.Bellon, P.Kaplan-Lefko, Y.Yang, Y.Zhang, J.Moriguchi, K.Rex, C.W.Johnson, P.E.Rose, A.M.Long, A.B.O'Connor, Y.Gu, A.Coxon, T.S.Kim, A.Tasker, T.L.Burgess, and I.Dussault (2008).
c-Met Inhibitors with Novel Binding Mode Show Activity against Several Hereditary Papillary Renal Cell Carcinoma-related Mutations.
  J Biol Chem, 283, 2675-2683.
PDB codes: 2rfn 2rfs
18463167 Y.Chen, H.Long, Z.Wu, X.Jiang, and L.Ma (2008).
EGF transregulates opioid receptors through EGFR-mediated GRK2 phosphorylation and activation.
  Mol Biol Cell, 19, 2973-2983.  
18372921 Z.Chen, J.Feng, J.S.Saldivar, D.Gu, A.Bockholt, and S.S.Sommer (2008).
EGFR somatic doublets in lung cancer are frequent and generally arise from a pair of driver mutations uncommonly seen as singlet mutations: one-third of doublets occur at five pairs of amino acids.
  Oncogene, 27, 4336-4343.  
17973572 D.B.Costa, B.Halmos, A.Kumar, S.T.Schumer, M.S.Huberman, T.J.Boggon, D.G.Tenen, and S.Kobayashi (2007).
BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations.
  PLoS Med, 4, 1669.  
18030354 K.Choi, C.J.Creighton, D.Stivers, N.Fujimoto, and J.M.Kurie (2007).
Transcriptional Profiling of Non-Small Cell Lung Cancer Cells with Activating EGFR Somatic Mutations.
  PLoS ONE, 2, e1226.  
17877814 M.M.de Gunst, M.I.Gallegos-Ruiz, G.Giaccone, and J.A.Rodriguez (2007).
Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain.
  Mol Cancer, 6, 56.  
17547522 R.Rosell, M.Taron, J.J.Sanchez, and L.Paz-Ares (2007).
Setting the benchmark for tailoring treatment with EGFR tyrosine kinase inhibitors.
  Future Oncol, 3, 277-283.  
17888033 T.Suzuki, A.Fujii, J.Ohya, Y.Amano, Y.Kitano, D.Abe, and H.Nakamura (2007).
Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor.
  Cancer Sci, 98, 1977-1984.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.