PDBsum entry 1z4y

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
Protein chain
443 a.a. *
Waters ×192
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Parainfluenza virus 5 (sv5) hemagglutinin-neuraminidase (hn)
Structure: Hemagglutinin-neuraminidase. Chain: a. Fragment: extracellular domain. Engineered: yes
Source: Simian virus 5. Organism_taxid: 11207. Strain: w3. Gene: hn. Expressed in: trichoplusia ni. Expression_system_taxid: 7111.
Biol. unit: Dimer (from PDB file)
2.60Å     R-factor:   0.216     R-free:   0.235
Authors: P.Yuan,T.B.Thompson,B.A.Wurzburg,R.G.Paterson,R.A.Lamb,T.S.J
Key ref:
P.Yuan et al. (2005). Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure, 13, 803-815. PubMed id: 15893670 DOI: 10.1016/j.str.2005.02.019
16-Mar-05     Release date:   24-May-05    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P04850  (HN_SV5) -  Hemagglutinin-neuraminidase
565 a.a.
443 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Exo-alpha-sialidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)-glycosidic linkages of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     virion   7 terms 
  Biological process     metabolic process   5 terms 
  Biochemical function     exo-alpha-(2->3)-sialidase activity     6 terms  


DOI no: 10.1016/j.str.2005.02.019 Structure 13:803-815 (2005)
PubMed id: 15893670  
Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose.
P.Yuan, T.B.Thompson, B.A.Wurzburg, R.G.Paterson, R.A.Lamb, T.S.Jardetzky.
The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.
  Selected figure(s)  
Figure 7.
Figure 7. SV5 HN Tetramers
Active sites are marked by space-filling representations of the ligand sialyllactose. The four subunits are shown in different colors.
(A) Top view of the SV5 HN tetramer arrangement.
(B) Side view of the SV5 HN tetramer arrangement, with a 60 packing angle between dimers.
(C) Side view of the superimposed SV5 HN and NDV HN tetramers, showing a shift in dimer packing. SV5 HN is colored blue, and NDV HN is colored green.
(D) A model for HN tetramer rearrangement upon cell-surface receptor binding. The HN tetramer is primarily stabilized by the N-terminal stalk region and can interact with F. Sialic acid receptors are displayed at the cell surface, where binding of the individual HN NA domains could perturb the NA tetramer arrangement, consistent with the weak interactions between NA domains. Changes in the HN NA domain tetramer could affect F interactions and stimulate membrane fusion.
  The above figure is reprinted by permission from Cell Press: Structure (2005, 13, 803-815) copyright 2005.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21217701 C.K.Navaratnarajah, N.Oezguen, L.Rupp, L.Kay, V.H.Leonard, W.Braun, and R.Cattaneo (2011).
The heads of the measles virus attachment protein move to transmit the fusion-triggering signal.
  Nat Struct Mol Biol, 18, 128-134.  
21289649 E.O.Saphire, and M.B.Oldstone (2011).
Measles virus fusion shifts into gear.
  Nat Struct Mol Biol, 18, 115-116.  
21217702 T.Hashiguchi, T.Ose, M.Kubota, N.Maita, J.Kamishikiryo, K.Maenaka, and Y.Yanagi (2011).
Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM.
  Nat Struct Mol Biol, 18, 135-141.
PDB codes: 3alw 3alx 3alz
20024589 C.A Baumann, and W.J Neubert (2010).
Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection.
  Arch Virol, 155, 217-227.  
20010840 C.Santiago, M.L.Celma, T.Stehle, and J.M.Casasnovas (2010).
Structure of the measles virus hemagglutinin bound to the CD46 receptor.
  Nat Struct Mol Biol, 17, 124-129.
PDB code: 3inb
  20727167 E.Herrera, P.Barcenas, R.Hernández, A.Méndez, G.Pérez-Ishiwara, and B.Barrón (2010).
A 176 amino acid polypeptide derived from the mumps virus HN ectodomain shows immunological and biological properties similar to the HN protein.
  Virol J, 7, 195.  
20631152 L.Zipperle, J.P.Langedijk, C.Orvell, M.Vandevelde, A.Zurbriggen, and P.Plattet (2010).
Identification of key residues in virulent canine distemper virus hemagglutinin that control CD150/SLAM-binding activity.
  J Virol, 84, 9618-9624.  
20375167 T.A.Bowden, M.Crispin, D.J.Harvey, E.Y.Jones, and D.I.Stuart (2010).
Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly.
  J Virol, 84, 6208-6217.
PDB code: 2x9m
19052089 A.Krishnan, S.K.Verma, P.Mani, R.Gupta, S.Kundu, and D.P.Sarkar (2009).
A histidine switch in hemagglutinin-neuraminidase triggers paramyxovirus-cell membrane fusion.
  J Virol, 83, 1727-1741.  
19878307 E.C.Smith, A.Popa, A.Chang, C.Masante, and R.E.Dutch (2009).
Viral entry mechanisms: the increasing diversity of paramyxovirus entry.
  FEBS J, 276, 7217-7227.  
19019819 H.C.Aguilar, Z.A.Ataman, V.Aspericueta, A.Q.Fang, M.Stroud, O.A.Negrete, R.A.Kammerer, and B.Lee (2009).
A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in Triggering the Fusion Glycoprotein (F).
  J Biol Chem, 284, 1628-1635.  
19056784 M.L.DeMarco, and R.J.Woods (2009).
Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces.
  Glycobiology, 19, 344-355.  
  20161127 R.M.Iorio, V.R.Melanson, and P.J.Mahon (2009).
Glycoprotein interactions in paramyxovirus fusion.
  Future Virol, 4, 335-351.  
19656895 T.Paal, M.A.Brindley, C.St Clair, A.Prussia, D.Gaus, S.A.Krumm, J.P.Snyder, and R.K.Plemper (2009).
Probing the spatial organization of measles virus fusion complexes.
  J Virol, 83, 10480-10493.  
19342221 T.Stehle, and J.M.Casasnovas (2009).
Specificity switching in virus-receptor complexes.
  Curr Opin Struct Biol, 19, 181-188.  
18809496 A.Imberty, and A.Varrot (2008).
Microbial recognition of human cell surface glycoconjugates.
  Curr Opin Struct Biol, 18, 567-576.  
18523462 B.Lee, Z.A.Ataman, and L.Jin (2008).
Evil versus 'eph-ective' use of ephrin-B2.
  Nat Struct Mol Biol, 15, 540-542.  
18426797 J.K.Lee, A.Prussia, T.Paal, L.K.White, J.P.Snyder, and R.K.Plemper (2008).
Functional interaction between paramyxovirus fusion and attachment proteins.
  J Biol Chem, 283, 16561-16572.  
18568847 J.M.White, S.E.Delos, M.Brecher, and K.Schornberg (2008).
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
  Crit Rev Biochem Mol Biol, 43, 189-219.  
18632560 K.Xu, K.R.Rajashankar, Y.P.Chan, J.P.Himanen, C.C.Broder, and D.B.Nikolov (2008).
Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3.
  Proc Natl Acad Sci U S A, 105, 9953-9958.
PDB codes: 3d11 3d12
18562539 M.Tsurudome, M.Nishio, M.Ito, S.Tanahashi, M.Kawano, H.Komada, and Y.Ito (2008).
Effects of hemagglutinin-neuraminidase protein mutations on cell-cell fusion mediated by human parainfluenza type 2 virus.
  J Virol, 82, 8283-8295.  
18753211 P.J.Mahon, A.M.Mirza, T.A.Musich, and R.M.Iorio (2008).
Engineered intermonomeric disulfide bonds in the globular domain of Newcastle disease virus hemagglutinin-neuraminidase protein: implications for the mechanism of fusion promotion.
  J Virol, 82, 10386-10396.  
18597807 P.Yuan, G.P.Leser, B.Demeler, R.A.Lamb, and T.S.Jardetzky (2008).
Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein.
  Virology, 378, 282-291.  
18346895 R.M.Iorio, and P.J.Mahon (2008).
Paramyxoviruses: different receptors - different mechanisms of fusion.
  Trends Microbiol, 16, 135-137.  
18488039 T.A.Bowden, A.R.Aricescu, R.J.Gilbert, J.M.Grimes, E.Y.Jones, and D.I.Stuart (2008).
Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2.
  Nat Struct Mol Biol, 15, 567-572.
PDB codes: 2vsk 2vsm
18815311 T.A.Bowden, M.Crispin, D.J.Harvey, A.R.Aricescu, J.M.Grimes, E.Y.Jones, and D.I.Stuart (2008).
Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design.
  J Virol, 82, 11628-11636.
PDB code: 2vwd
19122383 T.Hashiguchi, K.Maenaka, and Y.Yanagi (2008).
X-ray crystallographic analysis of measles virus hemagglutinin.
  Uirusu, 58, 1.  
17804513 K.Hasegawa, C.Hu, T.Nakamura, J.D.Marks, S.J.Russell, and K.W.Peng (2007).
Affinity thresholds for membrane fusion triggering by viral glycoproteins.
  J Virol, 81, 13149-13157.  
17470652 L.K.White, J.J.Yoon, J.K.Lee, A.Sun, Y.Du, H.Fu, J.P.Snyder, and R.K.Plemper (2007).
Nonnucleoside inhibitor of measles virus RNA-dependent RNA polymerase complex activity.
  Antimicrob Agents Chemother, 51, 2293-2303.  
17229690 M.Porotto, M.Fornabaio, G.E.Kellogg, and A.Moscona (2007).
A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism.
  J Virol, 81, 3216-3228.  
17254623 S.M.Tompkins, Y.Lin, G.P.Leser, K.A.Kramer, D.L.Haas, E.W.Howerth, J.Xu, M.J.Kennett, R.K.Durbin, J.E.Durbin, R.Tripp, R.A.Lamb, and B.He (2007).
Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge.
  Virology, 362, 139-150.  
16678421 C.J.Russell, and L.E.Luque (2006).
The structural basis of paramyxovirus invasion.
  Trends Microbiol, 14, 243-246.  
16575531 C.Ryan, V.Zaitsev, D.J.Tindal, J.C.Dyason, R.J.Thomson, I.Alymova, A.Portner, M.von Itzstein, and G.Taylor (2006).
Structural analysis of a designed inhibitor complexed with the hemagglutinin-neuraminidase of Newcastle disease virus.
  Glycoconj J, 23, 135-141.  
16940513 T.Bousse, and T.Takimoto (2006).
Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein.
  J Virol, 80, 9009-9016.  
16840334 V.Guillaume, H.Aslan, M.Ainouze, M.Guerbois, T.F.Wild, R.Buckland, and J.P.Langedijk (2006).
Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model.
  J Virol, 80, 7546-7554.  
16378965 V.R.Melanson, and R.M.Iorio (2006).
Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion.
  J Virol, 80, 623-633.  
16557006 M.Tsurudome (2005).
[Viral fusion mechanisms]
  Uirusu, 55, 207-219.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.