PDBsum entry 1z2c

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein PDB id
Protein chains
179 a.a. *
346 a.a. *
GNP ×2
_MG ×3
* Residue conservation analysis
PDB id:
Name: Signaling protein
Title: Crystal structure of mdia1 gbd-fh3 in complex with rhoc- gmppnp
Structure: Rho-related gtp-binding protein rhoc. Chain: a, c. Synonym: h9, rhoc. Engineered: yes. Mutation: yes. Diaphanous protein homolog 1. Chain: b, d. Synonym: diaphanous-related formin 1, drf1, mdia1, p140mdia.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: rhoc, arh9, arhc. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Mus musculus. House mouse. Organism_taxid: 10090.
Biol. unit: Dimer (from PDB file)
3.00Å     R-factor:   0.214     R-free:   0.285
Authors: R.Rose,M.Weyand,M.Lammers,T.Ishizaki,M.R.Ahmadian, A.Wittinghofer
Key ref:
R.Rose et al. (2005). Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature, 435, 513-518. PubMed id: 15864301 DOI: 10.1038/nature03604
08-Mar-05     Release date:   10-May-05    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P08134  (RHOC_HUMAN) -  Rho-related GTP-binding protein RhoC
193 a.a.
179 a.a.*
Protein chains
Pfam   ArchSchema ?
O08808  (DIAP1_MOUSE) -  Protein diaphanous homolog 1
1255 a.a.
346 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     intracellular   7 terms 
  Biological process     cellular component organization   10 terms 
  Biochemical function     nucleotide binding     6 terms  


DOI no: 10.1038/nature03604 Nature 435:513-518 (2005)
PubMed id: 15864301  
Structural and mechanistic insights into the interaction between Rho and mammalian Dia.
R.Rose, M.Weyand, M.Lammers, T.Ishizaki, M.R.Ahmadian, A.Wittinghofer.
Formins are involved in a variety of cellular processes that require the remodelling of the cytoskeleton. They contain formin homology domains FH1 and FH2, which initiate actin assembly. The Diaphanous-related formins form a subgroup that is characterized by an amino-terminal Rho GTPase-binding domain (GBD) and an FH3 domain, which bind somehow to the carboxy-terminal Diaphanous autoregulatory domain (DAD) to keep the protein in an inactive conformation. Upon binding of activated Rho proteins, the DAD is released and the ability of the formin to nucleate and elongate unbranched actin filaments is induced. Here we present the crystal structure of RhoC in complex with the regulatory N terminus of mammalian Diaphanous 1 (mDia1) containing the GBD/FH3 region, an all-helical structure with armadillo repeats. Rho uses its 'switch' regions for interacting with two subdomains of GBD/FH3. We show that the FH3 domain of mDia1 forms a stable dimer and we also identify the DAD-binding site. Although binding of Rho and DAD on the N-terminal fragment of mDia1 are mutually exclusive, their binding sites are only partially overlapping. On the basis of our results, we propose a structural model for the regulation of mDia1 by Rho and DAD.
  Selected figure(s)  
Figure 3.
Figure 3: The Rho -mDia[N] interaction. a, Stereo diagram of the Rho -mDia[N] interface. Colour-coding of mDia[N] as in Fig. 2a, Rho in yellow, and switch regions of Rho in red. Residues involved in the interface (cutoff level 3.6 ┼) are shown in ball-and-stick configuration. b, Schematic drawing of interacting residues in Rho and mDia. c, Superimposition of the Rho -mDia[N] complex (yellow) with RhoA GDP (red)27 (Protein Data Bank entry 1DPF). d, Superimposition of the Rho -mDia[N] complex with Cdc42 GppNHp (ref. 30, Protein Data Bank entry 1AM4). e, Van der Waals surface representation of mDia[N] (upper) and RhoC GppNHp (lower). Left panels show residues that are 100% conserved between RhoA, B, C, Cdc42 and Rac1 (black, lower panel), or >75% (blue) or >50% (magenta) conserved between mDia1, 2, 3 and human Dia1 -3 (upper panel). Residues of Rho and mDia involved in forming the Rho -mDia interface are shown in red in right panels.
Figure 4.
Figure 4: Mutually exclusive binding of Rho and DAD to mDia[N]. a, b, Observed association rate constants for the binding of wild-type and mutant RhoA to wild-type mDia[N] (a) or wild-type RhoA to different mDia[N] mutants (b), measured as in Fig. 1. c, d, Fluorescence polarization assay with 1 ÁM AMCA-labelled DAD peptide, mDia[N] mutants A256D (c) and N165D (d) and RhoA as described in Fig. 2. In c, wild-type mDia[N] was added as a control, to show DAD binding ability. All experiments were repeated at least twice and typical experiments are shown. e, Schematic diagram of the partially overlapping binding sites identified here and the proposed mechanism of release of DAD-mediated autoinhibition by Rho, as discussed in the text.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2005, 435, 513-518) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21278336 H.Sun, J.S.Schlondorff, E.J.Brown, H.N.Higgs, and M.R.Pollak (2011).
Rho activation of mDia formins is modulated by an interaction with inverted formin 2 (INF2).
  Proc Natl Acad Sci U S A, 108, 2933-2938.  
20419393 M.Yokotsuka, K.Iwaya, T.Saito, A.Pandiella, R.Tsuboi, N.Kohno, O.Matsubara, and K.Mukai (2011).
Overexpression of HER2 signaling to WAVE2-Arp2/3 complex activates MMP-independent migration in breast cancer.
  Breast Cancer Res Treat, 126, 311-318.  
  20927338 A.Nezami, F.Poy, A.Toms, W.Zheng, and M.J.Eck (2010).
Crystal structure of a complex between amino and carboxy terminal fragments of mDia1: insights into autoinhibition of diaphanous-related formins.
  PLoS One, 5, 0.
PDB code: 3o4x
20023659 E.J.Brown, J.S.Schlöndorff, D.J.Becker, H.Tsukaguchi, A.L.Uscinski, H.N.Higgs, J.M.Henderson, and M.R.Pollak (2010).
Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis.
  Nat Genet, 42, 72-76.  
  20687468 G.Normand, and R.W.King (2010).
Understanding cytokinesis failure.
  Adv Exp Med Biol, 676, 27-55.  
19841078 J.E.Heindl, I.Saran, C.R.Yi, C.F.Lesser, and M.B.Goldberg (2010).
Requirement for formin-induced actin polymerization during spread of Shigella flexneri.
  Infect Immun, 78, 193-203.  
20237478 K.G.Campellone, and M.D.Welch (2010).
A nucleator arms race: cellular control of actin assembly.
  Nat Rev Mol Cell Biol, 11, 237-251.  
20881207 L.Andrés-Delgado, O.M.Antón, R.Madrid, J.A.Byrne, and M.A.Alonso (2010).
Formin INF2 regulates MAL-mediated transport of Lck to the plasma membrane of human T lymphocytes.
  Blood, 116, 5919-5929.  
20147448 L.Gao, W.Liu, and A.Bretscher (2010).
The yeast formin Bnr1p has two localization regions that show spatially and temporally distinct association with septin structures.
  Mol Biol Cell, 21, 1253-1262.  
19997130 M.A.Chesarone, A.G.DuPage, and B.L.Goode (2010).
Unleashing formins to remodel the actin and microtubule cytoskeletons.
  Nat Rev Mol Cell Biol, 11, 62-74.  
21035343 M.Patel, Y.Margaron, N.Fradet, Q.Yang, B.Wilkes, M.Bouvier, K.Hofmann, and J.F.Côté (2010).
An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling.
  Curr Biol, 20, 2021-2027.  
18996154 R.Liu, E.V.Linardopoulou, G.E.Osborn, and S.M.Parkhurst (2010).
Formins in development: orchestrating body plan origami.
  Biochim Biophys Acta, 1803, 207-225.  
20177055 S.Barkó, B.Bugyi, M.F.Carlier, R.Gombos, T.Matusek, J.Mihály, and M.Nyitrai (2010).
Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM.
  J Biol Chem, 285, 13154-13169.  
  20927366 S.F.Ang, Z.S.Zhao, L.Lim, and E.Manser (2010).
DAAM1 is a formin required for centrosome re-orientation during cell migration.
  PLoS One, 5, 0.  
20660154 S.Watanabe, K.Okawa, T.Miki, S.Sakamoto, T.Morinaga, K.Segawa, T.Arakawa, M.Kinoshita, T.Ishizaki, and S.Narumiya (2010).
Rho and anillin-dependent control of mDia2 localization and function in cytokinesis.
  Mol Biol Cell, 21, 3193-3204.  
20101212 T.M.Kitzing, Y.Wang, O.Pertz, J.W.Copeland, and R.Grosse (2010).
Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC.
  Oncogene, 29, 2441-2448.  
  20927343 T.Otomo, D.R.Tomchick, C.Otomo, M.Machius, and M.K.Rosen (2010).
Crystal structure of the Formin mDia1 in autoinhibited conformation.
  PLoS One, 5, 0.
PDB code: 3obv
19459187 A.S.Paul, and T.D.Pollard (2009).
Review of the mechanism of processive actin filament elongation by formins.
  Cell Motil Cytoskeleton, 66, 606-617.  
19846663 C.C.Homem, and M.Peifer (2009).
Exploring the roles of diaphanous and enabled activity in shaping the balance between filopodia and lamellipodia.
  Mol Biol Cell, 20, 5138-5155.  
19366733 E.S.Chhabra, V.Ramabhadran, S.A.Gerber, and H.N.Higgs (2009).
INF2 is an endoplasmic reticulum-associated formin protein.
  J Cell Sci, 122, 1430-1440.  
19576201 J.Yan, Q.Lu, X.Fang, and P.N.Adler (2009).
Rho1 has multiple functions in Drosophila wing planar polarity.
  Dev Biol, 333, 186-199.  
19160018 S.Narumiya, M.Tanji, and T.Ishizaki (2009).
Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion.
  Cancer Metastasis Rev, 28, 65-76.  
19891643 T.Sun, M.Rodriguez, and L.Kim (2009).
Glycogen synthase kinase 3 in the world of cell migration.
  Dev Growth Differ, 51, 735-742.  
19815554 Y.Han, E.Eppinger, I.G.Schuster, L.U.Weigand, X.Liang, E.Kremmer, C.Peschel, and A.M.Krackhardt (2009).
Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing.
  J Biol Chem, 284, 33409-33417.  
18786395 A.Schulte, B.Stolp, A.Schönichen, O.Pylypenko, A.Rak, O.T.Fackler, and M.Geyer (2008).
The human formin FHOD1 contains a bipartite structure of FH3 and GTPase-binding domains required for activation.
  Structure, 16, 1313-1323.
PDB code: 3dad
18388856 C.X.Bai, S.Kim, W.P.Li, A.J.Streets, A.C.Ong, and L.Tsiokas (2008).
Activation of TRPP2 through mDia1-dependent voltage gating.
  EMBO J, 27, 1345-1356.  
18835814 D.C.Vaillant, S.J.Copeland, C.Davis, S.F.Thurston, N.Abdennur, and J.W.Copeland (2008).
Interaction of the N- and C-terminal Autoregulatory Domains of FRL2 Does Not Inhibit FRL2 Activity.
  J Biol Chem, 283, 33750-33762.  
18458159 F.Bartolini, J.B.Moseley, J.Schmoranzer, L.Cassimeris, B.L.Goode, and G.G.Gundersen (2008).
The formin mDia2 stabilizes microtubules independently of its actin nucleation activity.
  J Cell Biol, 181, 523-536.  
18723886 J.Yan, D.Huen, T.Morely, G.Johnson, D.Gubb, J.Roote, and P.N.Adler (2008).
The multiple-wing-hairs gene encodes a novel GBD-FH3 domain-containing protein that functions both prior to and after wing hair initiation.
  Genetics, 180, 219-228.  
18234843 L.Gao, and A.Bretscher (2008).
Analysis of Unregulated Formin Activity Reveals How Yeast Can Balance F-Actin Assembly between Different Microfilament-based Organizations.
  Mol Biol Cell, 19, 1474-1484.  
18829452 M.Lammers, S.Meyer, D.Kühlmann, and A.Wittinghofer (2008).
Specificity of Interactions between mDia Isoforms and Rho Proteins.
  J Biol Chem, 283, 35236-35246.
PDB code: 3eg5
18239683 R.Takeya, K.Taniguchi, S.Narumiya, and H.Sumimoto (2008).
The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells.
  EMBO J, 27, 618-628.  
18941507 S.L.Lai, T.H.Chan, M.J.Lin, W.P.Huang, S.W.Lou, and S.J.Lee (2008).
Diaphanous-related formin 2 and profilin I are required for gastrulation cell movements.
  PLoS ONE, 3, e3439.  
18347041 S.Majumder, and A.Lohia (2008).
Entamoeba histolytica encodes unique formins, a subset of which regulates DNA content and cell division.
  Infect Immun, 76, 2368-2378.  
18287523 S.Watanabe, Y.Ando, S.Yasuda, H.Hosoya, N.Watanabe, T.Ishizaki, and S.Narumiya (2008).
mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells.
  Mol Biol Cell, 19, 2328-2338.  
18218625 T.Higashi, T.Ikeda, R.Shirakawa, H.Kondo, M.Kawato, M.Horiguchi, T.Okuda, K.Okawa, S.Fukai, O.Nureki, T.Kita, and H.Horiuchi (2008).
Biochemical characterization of the Rho GTPase-regulated actin assembly by diaphanous-related formins, mDia1 and Daam1, in platelets.
  J Biol Chem, 283, 8746-8755.  
18162551 W.Liu, A.Sato, D.Khadka, R.Bharti, H.Diaz, L.W.Runnels, and R.Habas (2008).
Mechanism of activation of the Formin protein Daam1.
  Proc Natl Acad Sci U S A, 105, 210-215.  
18665374 X.L.Zhu, L.Liang, and Y.Q.Ding (2008).
Overexpression of FMNL2 is closely related to metastasis of colorectal cancer.
  Int J Colorectal Dis, 23, 1041-1047.  
  17909294 A.Schulte, A.Rak, O.Pylypenko, D.Ludwig, and M.Geyer (2007).
Purification, crystallization and preliminary structural characterization of the N-terminal region of the human formin-homology protein FHOD1.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 878-881.  
17373907 B.L.Goode, and M.J.Eck (2007).
Mechanism and function of formins in the control of actin assembly.
  Annu Rev Biochem, 76, 593-627.  
17482208 J.Lu, W.Meng, F.Poy, S.Maiti, B.L.Goode, and M.J.Eck (2007).
Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly.
  J Mol Biol, 369, 1258-1269.
PDB code: 2j1d
17398099 K.M.Eisenmann, E.S.Harris, S.M.Kitchen, H.A.Holman, H.N.Higgs, and A.S.Alberts (2007).
Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex.
  Curr Biol, 17, 579-591.  
17576764 M.F.Carlier, and D.Pantaloni (2007).
Control of actin assembly dynamics in cell motility.
  J Biol Chem, 282, 23005-23009.  
17986009 M.Yamashita, T.Higashi, S.Suetsugu, Y.Sato, T.Ikeda, R.Shirakawa, T.Kita, T.Takenawa, H.Horiuchi, S.Fukai, and O.Nureki (2007).
Crystal structure of human DAAM1 formin homology 2 domain.
  Genes Cells, 12, 1255-1265.
PDB code: 2z6e
17699595 S.G.Martin, S.A.Rincón, R.Basu, P.Pérez, and F.Chang (2007).
Regulation of the formin for3p by cdc42p and bud6p.
  Mol Biol Cell, 18, 4155-4167.  
17716977 S.J.Copeland, B.J.Green, S.Burchat, G.A.Papalia, D.Banner, and J.W.Copeland (2007).
The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2.
  J Biol Chem, 282, 30120-30130.  
17210567 S.Romero, D.Didry, E.Larquet, N.Boisset, D.Pantaloni, and M.F.Carlier (2007).
How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity.
  J Biol Chem, 282, 8435-8445.  
17477841 T.D.Pollard (2007).
Regulation of actin filament assembly by Arp2/3 complex and formins.
  Annu Rev Biophys Biomol Struct, 36, 451-477.  
17116658 X.Qu, J.M.Perez-Canadillas, S.Agrawal, J.De Baecke, H.Cheng, G.Varani, and C.Moore (2007).
The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3'-end processing.
  J Biol Chem, 282, 2101-2115.
PDB code: 2j8p
16361249 A.Schönichen, M.Alexander, J.E.Gasteier, F.E.Cuesta, O.T.Fackler, and M.Geyer (2006).
Biochemical characterization of the diaphanous autoregulatory interaction in the formin homology protein FHOD1.
  J Biol Chem, 281, 5084-5093.  
16943183 A.Seth, C.Otomo, and M.K.Rosen (2006).
Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1.
  J Cell Biol, 174, 701-713.  
16490788 B.Bugyi, G.Papp, G.Hild, D.Lõrinczy, E.M.Nevalainen, P.Lappalainen, B.Somogyi, and M.Nyitrai (2006).
Formins regulate actin filament flexibility through long range allosteric interactions.
  J Biol Chem, 281, 10727-10736.  
16361707 B.J.Wallar, B.N.Stropich, J.A.Schoenherr, H.A.Holman, S.M.Kitchen, and A.S.Alberts (2006).
The basic region of the diaphanous-autoregulatory domain (DAD) is required for autoregulatory interactions with the diaphanous-related formin inhibitory domain.
  J Biol Chem, 281, 4300-4307.  
16364624 D.R.Kovar (2006).
Molecular details of formin-mediated actin assembly.
  Curr Opin Cell Biol, 18, 11-17.  
16483928 D.Vavylonis, D.R.Kovar, B.O'Shaughnessy, and T.D.Pollard (2006).
Model of formin-associated actin filament elongation.
  Mol Cell, 21, 455-466.  
16818491 E.S.Chhabra, and H.N.Higgs (2006).
INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization.
  J Biol Chem, 281, 26754-26767.  
16293614 E.Torres, and M.K.Rosen (2006).
Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP.
  J Biol Chem, 281, 3513-3520.  
16959963 J.B.Moseley, and B.L.Goode (2006).
The yeast actin cytoskeleton: from cellular function to biochemical mechanism.
  Microbiol Mol Biol Rev, 70, 605-645.  
16380417 T.Kawasaki, H.Koita, T.Nakatsubo, K.Hasegawa, K.Wakabayashi, H.Takahashi, K.Umemura, T.Umezawa, and K.Shimamoto (2006).
Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice.
  Proc Natl Acad Sci U S A, 103, 230-235.  
16243528 A.Piekny, M.Werner, and M.Glotzer (2005).
Cytokinesis: welcome to the Rho zone.
  Trends Cell Biol, 15, 651-658.  
16292343 M.Lammers, R.Rose, A.Scrima, and A.Wittinghofer (2005).
The regulation of mDia1 by autoinhibition and its release by Rho*GTP.
  EMBO J, 24, 4176-4187.
PDB code: 2bap
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.