 |
PDBsum entry 1vyn
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Nucleic acid binding
|
PDB id
|
|
|
|
1vyn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
426:465-469
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain.
|
|
A.Lingel,
B.Simon,
E.Izaurralde,
M.Sattler.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
RNA interference is a conserved mechanism that regulates gene expression in
response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme
Dicer first cleaves dsRNA into 21-23-nucleotide small interfering RNAs (siRNAs).
In the effector step, the multimeric RNA-induced silencing complex (RISC)
identifies messenger RNAs homologous to the siRNAs and promotes their
degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC.
Both Argonaute and Dicer family proteins contain a common PAZ domain whose
function is unknown. Here we present the three-dimensional nuclear magnetic
resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain
adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic
residues. The nucleic-acid-binding patch is located in a cleft between the
surface of a central beta-barrel and a conserved module comprising strands
beta3, beta4 and helix alpha3. Because critical structural residues and the
binding surface are conserved, we suggest that PAZ domains in all members of the
Argonaute and Dicer families adopt a similar fold with nucleic-acid binding
function, and that this plays an important part in gene silencing.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Structure of the Ago2 PAZ domain from D. melanogaster.
a, Stereoview of the ensemble of 15 lowest-energy NMR
structures. Helices are shown in green, -strands
in blue. Secondary structure elements are labelled by residue
numbers (compare with Supplementary Fig. S1). b, Ribbon
representation of the Ago2 PAZ domain. Secondary structure
elements are labelled. The side chains of residues that were
mutated are annotated and coloured in gold. c, Comparison of the
central five-stranded -barrel
of the PAZ domain to a canonical OB-fold in the E. coli Rho
protein30. Related secondary structure elements are coloured in
blue. The inserted 3,
4,
3
module of the PAZ domain is shown in orange. The respective
topology of the two -barrels
is indicated schematically at the bottom.
|
 |
Figure 2.
Figure 2: Nucleic-acid-binding surface of the Ago2 PAZ domain.
a, Surface representation of the PAZ domain coloured by
sequence conservation (compare with Supplementary Fig. S1). High
to low sequence conservation is coloured from magenta to white,
respectively. b, Surface representation of the PAZ domain
coloured by electrostatic charge. White, blue and red
corresponds to neutral, positive and negative electrostatic
potential, respectively. c, NMR titration of the PAZ domain with
a single-stranded siRNA (siRNA-1as). The 1H-15N correlation
spectrum of the free protein and at sixfold molar excess of
siRNA is shown in blue and red, respectively. Green arrows
indicate the direction of peak movements. The insert shows
additional spectra at 0.5-, 1-, 1.5- and 3-fold molar excess of
RNA. p.p.m., parts per million. d, RNA-binding site on the PAZ
domain based on the NMR titration in c. Prolines or residues
that could not be analysed owing to signal overlap are shown in
yellow; residues where signals disappear at 1:0.5 molar
protein:RNA ratio are coloured green. Other residues are
coloured with a gradient from green to white according to the
degree of chemical shift changes. In all panels the same
orientation as in Fig. 1b is shown.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2003,
426,
465-469)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.M.Sasaki,
and
Y.Tomari
(2012).
The true core of RNA silencing revealed.
|
| |
Nat Struct Mol Biol,
19,
657-660.
|
 |
|
|
|
|
 |
K.Nakanishi,
D.E.Weinberg,
D.P.Bartel,
and
D.J.Patel
(2012).
Structure of yeast Argonaute with guide RNA.
|
| |
Nature,
486,
368-374.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Kolaczkowski,
D.N.Hupalo,
and
A.D.Kern
(2011).
Recurrent adaptation in RNA interference genes across the Drosophila phylogeny.
|
| |
Mol Biol Evol,
28,
1033-1042.
|
 |
|
|
|
|
 |
C.Dominguez,
M.Schubert,
O.Duss,
S.Ravindranathan,
and
F.H.Allain
(2011).
Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy.
|
| |
Prog Nucl Magn Reson Spectrosc,
58,
1.
|
 |
|
|
|
|
 |
E.S.Cenik,
R.Fukunaga,
G.Lu,
R.Dutcher,
Y.Wang,
T.M.Tanaka Hall,
and
P.D.Zamore
(2011).
Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease.
|
| |
Mol Cell,
42,
172-184.
|
 |
|
|
|
|
 |
I.Takigami,
T.Ohno,
Y.Kitade,
A.Hara,
A.Nagano,
G.Kawai,
M.Saitou,
A.Matsuhashi,
K.Yamada,
and
K.Shimizu
(2011).
Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model.
|
| |
Int J Cancer,
128,
216-226.
|
 |
|
|
|
|
 |
J.Shan,
L.Feng,
L.Luo,
W.Wu,
C.Li,
S.Li,
and
Y.Li
(2011).
MicroRNAs: Potential biomarker in organ transplantation.
|
| |
Transpl Immunol,
24,
210-215.
|
 |
|
|
|
|
 |
L.Zeng,
Q.Zhang,
K.Yan,
and
M.M.Zhou
(2011).
Structural insights into piRNA recognition by the human PIWI-like 1 PAZ domain.
|
| |
Proteins,
79,
2004-2009.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Bieri,
A.H.Kwan,
M.Mobli,
G.F.King,
J.P.Mackay,
and
P.R.Gooley
(2011).
Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination.
|
| |
FEBS J,
278,
704-715.
|
 |
|
|
|
|
 |
M.Maiti,
K.Nauwelaerts,
E.Lescrinier,
and
P.Herdewijn
(2011).
Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy.
|
| |
Chemistry,
17,
1519-1528.
|
 |
|
|
|
|
 |
Y.Tian,
D.K.Simanshu,
J.B.Ma,
and
D.J.Patel
(2011).
Inaugural article: Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains.
|
| |
Proc Natl Acad Sci U S A,
108,
903-910.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Boland,
F.Tritschler,
S.Heimstädt,
E.Izaurralde,
and
O.Weichenrieder
(2010).
Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein.
|
| |
EMBO Rep,
11,
522-527.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Liston,
M.Linterman,
and
L.F.Lu
(2010).
MicroRNA in the adaptive immune system, in sickness and in health.
|
| |
J Clin Immunol,
30,
339-346.
|
 |
|
|
|
|
 |
A.Schaefer,
H.I.Im,
M.T.Venø,
C.D.Fowler,
A.Min,
A.Intrator,
J.Kjems,
P.J.Kenny,
D.O'Carroll,
and
P.Greengard
(2010).
Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction.
|
| |
J Exp Med,
207,
1843-1851.
|
 |
|
|
|
|
 |
D.Haussecker,
Y.Huang,
A.Lau,
P.Parameswaran,
A.Z.Fire,
and
M.A.Kay
(2010).
Human tRNA-derived small RNAs in the global regulation of RNA silencing.
|
| |
RNA,
16,
673-695.
|
 |
|
|
|
|
 |
H.Qin,
F.Chen,
X.Huan,
S.Machida,
J.Song,
and
Y.A.Yuan
(2010).
Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction.
|
| |
RNA,
16,
474-481.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Parker
(2010).
How to slice: snapshots of Argonaute in action.
|
| |
Silence,
1,
3.
|
 |
|
|
|
|
 |
K.C.Vickers,
and
A.T.Remaley
(2010).
MicroRNAs in atherosclerosis and lipoprotein metabolism.
|
| |
Curr Opin Endocrinol Diabetes Obes,
17,
150-155.
|
 |
|
|
|
|
 |
M.Johnston,
M.C.Geoffroy,
A.Sobala,
R.Hay,
and
G.Hutvagner
(2010).
HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells.
|
| |
Mol Biol Cell,
21,
1462-1469.
|
 |
|
|
|
|
 |
S.L.Ameres,
M.D.Horwich,
J.H.Hung,
J.Xu,
M.Ghildiyal,
Z.Weng,
and
P.D.Zamore
(2010).
Target RNA-directed trimming and tailing of small silencing RNAs.
|
| |
Science,
328,
1534-1539.
|
 |
|
|
|
|
 |
W.M.Li,
T.Barnes,
and
C.H.Lee
(2010).
Endoribonucleases--enzymes gaining spotlight in mRNA metabolism.
|
| |
FEBS J,
277,
627-641.
|
 |
|
|
|
|
 |
X.Zhou,
H.Guo,
K.Chen,
H.Cheng,
and
R.Zhou
(2010).
Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes.
|
| |
Genetica,
138,
805-812.
|
 |
|
|
|
|
 |
Y.Akao,
Y.Nakagawa,
I.Hirata,
A.Iio,
T.Itoh,
K.Kojima,
R.Nakashima,
Y.Kitade,
and
T.Naoe
(2010).
Role of anti-oncomirs miR-143 and -145 in human colorectal tumors.
|
| |
Cancer Gene Ther,
17,
398-408.
|
 |
|
|
|
|
 |
Y.Kitade,
and
Y.Akao
(2010).
MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and -145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug.
|
| |
J Pharmacol Sci,
114,
276-280.
|
 |
|
|
|
|
 |
C.D.Malone,
and
G.J.Hannon
(2009).
Small RNAs as guardians of the genome.
|
| |
Cell,
136,
656-668.
|
 |
|
|
|
|
 |
F.A.Steiner,
K.L.Okihara,
S.W.Hoogstrate,
T.Sijen,
and
R.F.Ketting
(2009).
RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans.
|
| |
Nat Struct Mol Biol,
16,
207-211.
|
 |
|
|
|
|
 |
I.Djupedal,
I.C.Kos-Braun,
R.A.Mosher,
N.Söderholm,
F.Simmer,
T.J.Hardcastle,
A.Fender,
N.Heidrich,
A.Kagansky,
E.Bayne,
E.G.Wagner,
D.C.Baulcombe,
R.C.Allshire,
and
K.Ekwall
(2009).
Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA.
|
| |
EMBO J,
28,
3832-3844.
|
 |
|
|
|
|
 |
L.F.Lu,
and
A.Liston
(2009).
MicroRNA in the immune system, microRNA as an immune system.
|
| |
Immunology,
127,
291-298.
|
 |
|
|
|
|
 |
M.Jinek,
and
J.A.Doudna
(2009).
A three-dimensional view of the molecular machinery of RNA interference.
|
| |
Nature,
457,
405-412.
|
 |
|
|
|
|
 |
M.Nowak,
E.Wyszko,
A.Fedoruk-Wyszomirska,
H.Pospieszny,
M.Z.Barciszewska,
and
J.Barciszewski
(2009).
A new and efficient method for inhibition of RNA viruses by DNA interference.
|
| |
FEBS J,
276,
4372-4380.
|
 |
|
|
|
|
 |
M.Nowotny,
and
W.Yang
(2009).
Structural and functional modules in RNA interference.
|
| |
Curr Opin Struct Biol,
19,
286-293.
|
 |
|
|
|
|
 |
M.P.Perron,
and
P.Provost
(2009).
Protein components of the microRNA pathway and human diseases.
|
| |
Methods Mol Biol,
487,
369-385.
|
 |
|
|
|
|
 |
T.Thomson,
and
H.Lin
(2009).
The biogenesis and function of PIWI proteins and piRNAs: progress and prospect.
|
| |
Annu Rev Cell Dev Biol,
25,
355-376.
|
 |
|
|
|
|
 |
Y.Mao,
X.Xue,
and
X.Chen
(2009).
Are small RNAs a big help to plants?
|
| |
Sci China C Life Sci,
52,
212-223.
|
 |
|
|
|
|
 |
A.A.Saraiya,
and
C.C.Wang
(2008).
snoRNA, a novel precursor of microRNA in Giardia lamblia.
|
| |
PLoS Pathog,
4,
e1000224.
|
 |
|
|
|
|
 |
G.Hutvagner,
and
M.J.Simard
(2008).
Argonaute proteins: key players in RNA silencing.
|
| |
Nat Rev Mol Cell Biol,
9,
22-32.
|
 |
|
|
|
|
 |
H.F.Lodish,
B.Zhou,
G.Liu,
and
C.Z.Chen
(2008).
Micromanagement of the immune system by microRNAs.
|
| |
Nat Rev Immunol,
8,
120-130.
|
 |
|
|
|
|
 |
J.Höck,
and
G.Meister
(2008).
The Argonaute protein family.
|
| |
Genome Biol,
9,
210.
|
 |
|
|
|
|
 |
K.E.Lukong,
K.W.Chang,
E.W.Khandjian,
and
S.Richard
(2008).
RNA-binding proteins in human genetic disease.
|
| |
Trends Genet,
24,
416-425.
|
 |
|
|
|
|
 |
M.P.Perron,
and
P.Provost
(2008).
Protein interactions and complexes in human microRNA biogenesis and function.
|
| |
Front Biosci,
13,
2537-2547.
|
 |
|
|
|
|
 |
S.K.Singh,
M.Pal Bhadra,
H.J.Girschick,
and
U.Bhadra
(2008).
MicroRNAs--micro in size but macro in function.
|
| |
FEBS J,
275,
4929-4944.
|
 |
|
|
|
|
 |
S.Ossowski,
R.Schwab,
and
D.Weigel
(2008).
Gene silencing in plants using artificial microRNAs and other small RNAs.
|
| |
Plant J,
53,
674-690.
|
 |
|
|
|
|
 |
S.Yokota
(2008).
Historical survey on chromatoid body research.
|
| |
Acta Histochem Cytochem,
41,
65-82.
|
 |
|
|
|
|
 |
X.Luo,
H.H.Hsiao,
M.Bubunenko,
G.Weber,
D.L.Court,
M.E.Gottesman,
H.Urlaub,
and
M.C.Wahl
(2008).
Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex.
|
| |
Mol Cell,
32,
791-802.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.M.Lunde,
C.Moore,
and
G.Varani
(2007).
RNA-binding proteins: modular design for efficient function.
|
| |
Nat Rev Mol Cell Biol,
8,
479-490.
|
 |
|
|
|
|
 |
C.R.Faehnle,
and
L.Joshua-Tor
(2007).
Argonautes confront new small RNAs.
|
| |
Curr Opin Chem Biol,
11,
569-577.
|
 |
|
|
|
|
 |
D.O'Carroll,
I.Mecklenbrauker,
P.P.Das,
A.Santana,
U.Koenig,
A.J.Enright,
E.A.Miska,
and
A.Tarakhovsky
(2007).
A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway.
|
| |
Genes Dev,
21,
1999-2004.
|
 |
|
|
|
|
 |
H.K.Kini,
and
S.P.Walton
(2007).
In vitro binding of single-stranded RNA by human Dicer.
|
| |
FEBS Lett,
581,
5611-5616.
|
 |
|
|
|
|
 |
I.J.MacRae,
and
J.A.Doudna
(2007).
Ribonuclease revisited: structural insights into ribonuclease III family enzymes.
|
| |
Curr Opin Struct Biol,
17,
138-145.
|
 |
|
|
|
|
 |
K.Förstemann,
M.D.Horwich,
L.Wee,
Y.Tomari,
and
P.D.Zamore
(2007).
Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1.
|
| |
Cell,
130,
287-297.
|
 |
|
|
|
|
 |
K.Sipa,
E.Sochacka,
J.Kazmierczak-Baranska,
M.Maszewska,
M.Janicka,
G.Nowak,
and
B.Nawrot
(2007).
Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA.
|
| |
RNA,
13,
1301-1316.
|
 |
|
|
|
|
 |
N.H.Tolia,
and
L.Joshua-Tor
(2007).
Slicer and the argonautes.
|
| |
Nat Chem Biol,
3,
36-43.
|
 |
|
|
|
|
 |
R.J.Holmes,
and
P.E.Cohen
(2007).
Small RNAs and RNAi pathways in meiotic prophase I.
|
| |
Chromosome Res,
15,
653-665.
|
 |
|
|
|
|
 |
R.S.Alisch,
P.Jin,
M.Epstein,
T.Caspary,
and
S.T.Warren
(2007).
Argonaute2 is essential for mammalian gastrulation and proper mesoderm formation.
|
| |
PLoS Genet,
3,
e227.
|
 |
|
|
|
|
 |
S.M.Buker,
T.Iida,
M.Bühler,
J.Villén,
S.P.Gygi,
J.Nakayama,
and
D.Moazed
(2007).
Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast.
|
| |
Nat Struct Mol Biol,
14,
200-207.
|
 |
|
|
|
|
 |
S.Till,
E.Lejeune,
R.Thermann,
M.Bortfeld,
M.Hothorn,
D.Enderle,
C.Heinrich,
M.W.Hentze,
and
A.G.Ladurner
(2007).
A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain.
|
| |
Nat Struct Mol Biol,
14,
897-903.
|
 |
|
|
|
|
 |
X.Liu,
J.K.Park,
F.Jiang,
Y.Liu,
D.McKearin,
and
Q.Liu
(2007).
Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes.
|
| |
RNA,
13,
2324-2329.
|
 |
|
|
|
|
 |
B.B.Tops,
R.H.Plasterk,
and
R.F.Ketting
(2006).
The Caenorhabditis elegans Argonautes ALG-1 and ALG-2: almost identical yet different.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
189-194.
|
 |
|
|
|
|
 |
B.M.Engels,
and
G.Hutvagner
(2006).
Principles and effects of microRNA-mediated post-transcriptional gene regulation.
|
| |
Oncogene,
25,
6163-6169.
|
 |
|
|
|
|
 |
D.J.Patel,
J.B.Ma,
Y.R.Yuan,
K.Ye,
Y.Pei,
V.Kuryavyi,
L.Malinina,
G.Meister,
and
T.Tuschl
(2006).
Structural biology of RNA silencing and its functional implications.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
81-93.
|
 |
|
|
|
|
 |
D.L.Ouellet,
M.P.Perron,
L.A.Gobeil,
P.Plante,
and
P.Provost
(2006).
MicroRNAs in Gene Regulation: When the Smallest Governs It All.
|
| |
J Biomed Biotechnol,
2006,
69616.
|
 |
|
|
|
|
 |
D.Moazed,
M.Bühler,
S.M.Buker,
S.U.Colmenares,
E.L.Gerace,
S.A.Gerber,
E.J.Hong,
M.R.Motamedi,
A.Verdel,
J.Villén,
and
S.P.Gygi
(2006).
Studies on the mechanism of RNAi-dependent heterochromatin assembly.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
461-471.
|
 |
|
|
|
|
 |
H.Tsukioka,
M.Takahashi,
H.Mon,
K.Okano,
K.Mita,
T.Shimada,
J.M.Lee,
Y.Kawaguchi,
K.Koga,
and
T.Kusakabe
(2006).
Role of the silkworm argonaute2 homolog gene in double-strand break repair of extrachromosomal DNA.
|
| |
Nucleic Acids Res,
34,
1092-1101.
|
 |
|
|
|
|
 |
I.J.Macrae,
K.Zhou,
F.Li,
A.Repic,
A.N.Brooks,
W.Z.Cande,
P.D.Adams,
and
J.A.Doudna
(2006).
Structural basis for double-stranded RNA processing by Dicer.
|
| |
Science,
311,
195-198.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Bove,
C.L.Hord,
and
M.A.Mullen
(2006).
The blossoming of RNA biology: Novel insights from plant systems.
|
| |
RNA,
12,
2035-2046.
|
 |
|
|
|
|
 |
J.Li,
G.Yang,
S.Li,
G.Cao,
Q.Zhao,
X.Liu,
M.Fan,
B.Shen,
and
N.Shao
(2006).
3'-Poly(A) tail enhances siRNA activity against exogenous reporter genes in MCF-7 cells.
|
| |
J RNAi Gene Silencing,
2,
195-204.
|
 |
|
|
|
|
 |
J.Rehwinkel,
P.Natalin,
A.Stark,
J.Brennecke,
S.M.Cohen,
and
E.Izaurralde
(2006).
Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster.
|
| |
Mol Cell Biol,
26,
2965-2975.
|
 |
|
|
|
|
 |
J.S.Parker,
and
D.Barford
(2006).
Argonaute: A scaffold for the function of short regulatory RNAs.
|
| |
Trends Biochem Sci,
31,
622-630.
|
 |
|
|
|
|
 |
K.Kim,
Y.S.Lee,
D.Harris,
K.Nakahara,
and
R.W.Carthew
(2006).
The RNAi pathway initiated by Dicer-2 in Drosophila.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
39-44.
|
 |
|
|
|
|
 |
L.Joshua-Tor
(2006).
The Argonautes.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
67-72.
|
 |
|
|
|
|
 |
L.Yang,
W.Huang,
H.Wang,
R.Cai,
Y.Xu,
and
H.Huang
(2006).
Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development.
|
| |
Plant Mol Biol,
61,
63-78.
|
 |
|
|
|
|
 |
M.W.Jones-Rhoades,
D.P.Bartel,
and
B.Bartel
(2006).
MicroRNAS and their regulatory roles in plants.
|
| |
Annu Rev Plant Biol,
57,
19-53.
|
 |
|
|
|
|
 |
S.Dorner,
L.Lum,
M.Kim,
R.Paro,
P.A.Beachy,
and
R.Green
(2006).
A genomewide screen for components of the RNAi pathway in Drosophila cultured cells.
|
| |
Proc Natl Acad Sci U S A,
103,
11880-11885.
|
 |
|
|
|
|
 |
W.J.Meyer,
S.Schreiber,
Y.Guo,
T.Volkmann,
M.A.Welte,
and
H.A.Müller
(2006).
Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos.
|
| |
PLoS Genet,
2,
e134.
|
 |
|
|
|
|
 |
Y.Stram,
and
L.Kuzntzova
(2006).
Inhibition of viruses by RNA interference.
|
| |
Virus Genes,
32,
299-306.
|
 |
|
|
|
|
 |
Y.Zeng
(2006).
Principles of micro-RNA production and maturation.
|
| |
Oncogene,
25,
6156-6162.
|
 |
|
|
|
|
 |
A.J.Rodriguez,
S.A.Seipel,
D.R.Hamill,
D.P.Romancino,
M.DI Carlo,
K.A.Suprenant,
and
E.M.Bonder
(2005).
Seawi--a sea urchin piwi/argonaute family member is a component of MT-RNP complexes.
|
| |
RNA,
11,
646-656.
|
 |
|
|
|
|
 |
A.Vermeulen,
L.Behlen,
A.Reynolds,
A.Wolfson,
W.S.Marshall,
J.Karpilow,
and
A.Khvorova
(2005).
The contributions of dsRNA structure to Dicer specificity and efficiency.
|
| |
RNA,
11,
674-682.
|
 |
|
|
|
|
 |
B.S.Heale,
H.S.Soifer,
C.Bowers,
and
J.J.Rossi
(2005).
siRNA target site secondary structure predictions using local stable substructures.
|
| |
Nucleic Acids Res,
33,
e30.
|
 |
|
|
|
|
 |
C.de Chiara,
R.P.Menon,
S.Adinolfi,
J.de Boer,
E.Ktistaki,
G.Kelly,
L.Calder,
D.Kioussis,
and
A.Pastore
(2005).
The AXH domain adopts alternative folds the solution structure of HBP1 AXH.
|
| |
Structure,
13,
743-753.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Siolas,
C.Lerner,
J.Burchard,
W.Ge,
P.S.Linsley,
P.J.Paddison,
G.J.Hannon,
and
M.A.Cleary
(2005).
Synthetic shRNAs as potent RNAi triggers.
|
| |
Nat Biotechnol,
23,
227-231.
|
 |
|
|
|
|
 |
E.J.Sontheimer
(2005).
Assembly and function of RNA silencing complexes.
|
| |
Nat Rev Mol Cell Biol,
6,
127-138.
|
 |
|
|
|
|
 |
G.Tang
(2005).
siRNA and miRNA: an insight into RISCs.
|
| |
Trends Biochem Sci,
30,
106-114.
|
 |
|
|
|
|
 |
J.B.Ma,
Y.R.Yuan,
G.Meister,
Y.Pei,
T.Tuschl,
and
D.J.Patel
(2005).
Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein.
|
| |
Nature,
434,
666-670.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Baumberger,
and
D.C.Baulcombe
(2005).
Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs.
|
| |
Proc Natl Acad Sci U S A,
102,
11928-11933.
|
 |
|
|
|
|
 |
R.A.Rapp,
and
J.F.Wendel
(2005).
Epigenetics and plant evolution.
|
| |
New Phytol,
168,
81-91.
|
 |
|
|
|
|
 |
R.E.Collins,
and
X.Cheng
(2005).
Structural domains in RNAi.
|
| |
FEBS Lett,
579,
5841-5849.
|
 |
|
|
|
|
 |
R.I.Gregory,
T.P.Chendrimada,
N.Cooch,
and
R.Shiekhattar
(2005).
Human RISC couples microRNA biogenesis and posttranscriptional gene silencing.
|
| |
Cell,
123,
631-640.
|
 |
|
|
|
|
 |
T.I.Orban,
and
E.Izaurralde
(2005).
Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome.
|
| |
RNA,
11,
459-469.
|
 |
|
|
|
|
 |
T.M.Hall
(2005).
Structure and function of argonaute proteins.
|
| |
Structure,
13,
1403-1408.
|
 |
|
|
|
|
 |
T.M.Hammond,
and
N.P.Keller
(2005).
RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases.
|
| |
Genetics,
169,
607-617.
|
 |
|
|
|
|
 |
W.Filipowicz,
L.Jaskiewicz,
F.A.Kolb,
and
R.S.Pillai
(2005).
Post-transcriptional gene silencing by siRNAs and miRNAs.
|
| |
Curr Opin Struct Biol,
15,
331-341.
|
 |
|
|
|
|
 |
Y.Chen,
and
G.Varani
(2005).
Protein families and RNA recognition.
|
| |
FEBS J,
272,
2088-2097.
|
 |
|
|
|
|
 |
Y.Liu,
X.Song,
M.A.Gorovsky,
and
K.M.Karrer
(2005).
Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent.
|
| |
Eukaryot Cell,
4,
421-431.
|
 |
|
|
|
|
 |
Y.R.Yuan,
Y.Pei,
J.B.Ma,
V.Kuryavyi,
M.Zhadina,
G.Meister,
H.Y.Chen,
Z.Dauter,
T.Tuschl,
and
D.J.Patel
(2005).
Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage.
|
| |
Mol Cell,
19,
405-419.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Zeng,
R.Yi,
and
B.R.Cullen
(2005).
Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha.
|
| |
EMBO J,
24,
138-148.
|
 |
|
|
|
|
 |
A.Lingel,
B.Simon,
E.Izaurralde,
and
M.Sattler
(2004).
Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain.
|
| |
Nat Struct Mol Biol,
11,
576-577.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Lingel,
and
E.Izaurralde
(2004).
RNAi: finding the elusive endonuclease.
|
| |
RNA,
10,
1675-1679.
|
 |
|
|
|
|
 |
B.John,
A.J.Enright,
A.Aravin,
T.Tuschl,
C.Sander,
and
D.S.Marks
(2004).
Human MicroRNA targets.
|
| |
PLoS Biol,
2,
e363.
|
 |
|
|
|
|
 |
D.Baulcombe
(2004).
RNA silencing in plants.
|
| |
Nature,
431,
356-363.
|
 |
|
|
|
|
 |
D.V.Dugas,
and
B.Bartel
(2004).
MicroRNA regulation of gene expression in plants.
|
| |
Curr Opin Plant Biol,
7,
512-520.
|
 |
|
|
|
|
 |
E.P.Murchison,
and
G.J.Hannon
(2004).
miRNAs on the move: miRNA biogenesis and the RNAi machinery.
|
| |
Curr Opin Cell Biol,
16,
223-229.
|
 |
|
|
|
|
 |
E.Ullu,
C.Tschudi,
and
T.Chakraborty
(2004).
RNA interference in protozoan parasites.
|
| |
Cell Microbiol,
6,
509-519.
|
 |
|
|
|
|
 |
G.Meister,
M.Landthaler,
A.Patkaniowska,
Y.Dorsett,
G.Teng,
and
T.Tuschl
(2004).
Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs.
|
| |
Mol Cell,
15,
185-197.
|
 |
|
|
|
|
 |
H.H.Park,
and
H.Wu
(2004).
Gauging length: recognition of small interfering RNAs.
|
| |
Structure,
12,
172-173.
|
 |
|
|
|
|
 |
H.Shi,
E.Ullu,
and
C.Tschudi
(2004).
Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain.
|
| |
J Biol Chem,
279,
49889-49893.
|
 |
|
|
|
|
 |
H.Vaucheret,
F.Vazquez,
P.Crété,
and
D.P.Bartel
(2004).
The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.
|
| |
Genes Dev,
18,
1187-1197.
|
 |
|
|
|
|
 |
H.Zhang,
F.A.Kolb,
L.Jaskiewicz,
E.Westhof,
and
W.Filipowicz
(2004).
Single processing center models for human Dicer and bacterial RNase III.
|
| |
Cell,
118,
57-68.
|
 |
|
|
|
|
 |
J.B.Ma,
K.Ye,
and
D.J.Patel
(2004).
Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain.
|
| |
Nature,
429,
318-322.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Han,
Y.Lee,
K.H.Yeom,
Y.K.Kim,
H.Jin,
and
V.N.Kim
(2004).
The Drosha-DGCR8 complex in primary microRNA processing.
|
| |
Genes Dev,
18,
3016-3027.
|
 |
|
|
|
|
 |
J.J.Song,
S.K.Smith,
G.J.Hannon,
and
L.Joshua-Tor
(2004).
Crystal structure of Argonaute and its implications for RISC slicer activity.
|
| |
Science,
305,
1434-1437.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Parker,
S.M.Roe,
and
D.Barford
(2004).
Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity.
|
| |
EMBO J,
23,
4727-4737.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Mochizuki,
and
M.A.Gorovsky
(2004).
Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement.
|
| |
Genes Dev,
18,
2068-2073.
|
 |
|
|
|
|
 |
K.Mochizuki,
and
M.A.Gorovsky
(2004).
Small RNAs in genome rearrangement in Tetrahymena.
|
| |
Curr Opin Genet Dev,
14,
181-187.
|
 |
|
|
|
|
 |
K.Ui-Tei,
Y.Naito,
F.Takahashi,
T.Haraguchi,
H.Ohki-Hamazaki,
A.Juni,
R.Ueda,
and
K.Saigo
(2004).
Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference.
|
| |
Nucleic Acids Res,
32,
936-948.
|
 |
|
|
|
|
 |
K.Yoshinari,
M.Miyagishi,
and
K.Taira
(2004).
Effects on RNAi of the tight structure, sequence and position of the targeted region.
|
| |
Nucleic Acids Res,
32,
691-699.
|
 |
|
|
|
|
 |
L.He,
and
G.J.Hannon
(2004).
MicroRNAs: small RNAs with a big role in gene regulation.
|
| |
Nat Rev Genet,
5,
522-531.
|
 |
|
|
|
|
 |
L.Joshua-Tor
(2004).
siRNAs at RISC.
|
| |
Structure,
12,
1120-1122.
|
 |
|
|
|
|
 |
M.A.Carmell,
and
G.J.Hannon
(2004).
RNase III enzymes and the initiation of gene silencing.
|
| |
Nat Struct Mol Biol,
11,
214-218.
|
 |
|
|
|
|
 |
M.R.Motamedi,
A.Verdel,
S.U.Colmenares,
S.A.Gerber,
S.P.Gygi,
and
D.Moazed
(2004).
Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs.
|
| |
Cell,
119,
789-802.
|
 |
|
|
|
|
 |
R.F.Ketting,
and
R.H.Plasterk
(2004).
What's new about RNAi? Meeting on siRNAs and miRNAs.
|
| |
EMBO Rep,
5,
762-765.
|
 |
|
|
|
|
 |
S.I.Grewal,
and
J.C.Rice
(2004).
Regulation of heterochromatin by histone methylation and small RNAs.
|
| |
Curr Opin Cell Biol,
16,
230-238.
|
 |
|
|
|
|
 |
T.A.Rand,
K.Ginalski,
N.V.Grishin,
and
X.Wang
(2004).
Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity.
|
| |
Proc Natl Acad Sci U S A,
101,
14385-14389.
|
 |
|
|
|
|
 |
T.Nolan,
and
C.Cogoni
(2004).
The long hand of the small RNAs reaches into several levels of gene regulation.
|
| |
Biochem Cell Biol,
82,
472-481.
|
 |
|
|
|
|
 |
T.Numata,
I.Ishimatsu,
Y.Kakuta,
I.Tanaka,
and
M.Kimura
(2004).
Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp29.
|
| |
RNA,
10,
1423-1432.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.J.Robert,
N.L.Vastenhouw,
and
R.H.Plasterk
(2004).
RNA interference, transposon silencing, and cosuppression in the Caenorhabditis elegans germ line: similarities and differences.
|
| |
Cold Spring Harb Symp Quant Biol,
69,
397-402.
|
 |
|
|
|
|
 |
Z.He,
and
E.J.Sontheimer
(2004).
"siRNAs and miRNAs": a meeting report on RNA silencing.
|
| |
RNA,
10,
1165-1173.
|
 |
|
|
|
|
 |
Z.Xie,
L.K.Johansen,
A.M.Gustafson,
K.D.Kasschau,
A.D.Lellis,
D.Zilberman,
S.E.Jacobsen,
and
J.C.Carrington
(2004).
Genetic and functional diversification of small RNA pathways in plants.
|
| |
PLoS Biol,
2,
E104.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |