spacer
spacer

PDBsum entry 1vj7

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase, transferase PDB id
1vj7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
326 a.a. *
310 a.a. *
Ligands
GDP ×2
GPX
Metals
_MN ×2
Waters ×196
* Residue conservation analysis
PDB id:
1vj7
Name: Hydrolase, transferase
Title: Crystal structure of the bifunctional catalytic fragment of relseq, the rela/spot homolog from streptococcus equisimilis.
Structure: Bifunctional rela/spot. Chain: a, b. Fragment: (p)ppgpp-3'-pyrophosphohydrolase and (p)ppgpp-synthetase subdomains. Synonym: atp:gtp 3'- pyrophosphotransferase, ppgpp synthetase i, p, ppgpp synthetase, stringent response-like protein. Engineered: yes
Source: Streptococcus dysgalactiae subsp. Equisimilis. Organism_taxid: 119602. Strain: subsp. Equisimilis. Gene: rela, rel, spot, rsh. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.10Å     R-factor:   0.238     R-free:   0.272
Authors: T.Hogg,U.Mechold,H.Malke,M.Cashel,R.Hilgenfeld
Key ref:
T.Hogg et al. (2004). Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Cell, 117, 57-68. PubMed id: 15066282 DOI: 10.1016/S0092-8674(04)00260-0
Date:
03-Feb-04     Release date:   04-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q54089  (RELA_STREQ) -  Bifunctional (p)ppGpp synthase/hydrolase RelA from Streptococcus dysgalactiae subsp. equisimilis
Seq:
Struc:
 
Seq:
Struc:
739 a.a.
326 a.a.*
Protein chain
Pfam   ArchSchema ?
Q54089  (RELA_STREQ) -  Bifunctional (p)ppGpp synthase/hydrolase RelA from Streptococcus dysgalactiae subsp. equisimilis
Seq:
Struc:
 
Seq:
Struc:
739 a.a.
310 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 14 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: Chains A, B: E.C.2.7.6.5  - Gtp diphosphokinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + ATP = guanosine 3'-diphosphate 5'-triphosphate + AMP
GTP
+
ATP
Bound ligand (Het Group name = GDP)
matches with 87.50% similarity
= guanosine 3'-diphosphate 5'-triphosphate
+
AMP
Bound ligand (Het Group name = GPX)
matches with 77.50% similarity
   Enzyme class 3: Chains A, B: E.C.3.1.7.2  - guanosine-3',5'-bis(diphosphate) 3'-diphosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: guanosine 3',5'-bis(diphosphate) + H2O = GDP + diphosphate + H+
guanosine 3',5'-bis(diphosphate)
Bound ligand (Het Group name = GPX)
matches with 86.11% similarity
+ H2O
= GDP
+
diphosphate
Bound ligand (Het Group name = GDP)
corresponds exactly
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0092-8674(04)00260-0 Cell 117:57-68 (2004)
PubMed id: 15066282  
 
 
Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected].
T.Hogg, U.Mechold, H.Malke, M.Cashel, R.Hilgenfeld.
 
  ABSTRACT  
 
Enzymes of the Rel/Spo family enable bacteria to survive prolonged periods of nutrient limitation by producing an intracellular signaling alarmone, (p)ppGpp, which triggers the so-called stringent response. Both the synthesis of (p)ppGpp from ATP and GDP(GTP), and its hydrolysis to GDP(GTP) and pyrophosphate, are catalyzed by Rel/Spo proteins. The 2.1 A crystal structure of the bifunctional catalytic fragment of the Rel/Spo homolog from Streptococcus dysgalactiae subsp. equisimilis, Rel(Seq), reveals two conformations of the enzyme corresponding to known reciprocal activity states: (p)ppGpp-hydrolase-OFF/(p)ppGpp-synthetase-ON and hydrolase-ON/synthetase-OFF. The hydrolase and synthetase domains bear remarkable similarities to the catalytic domains of the cyclic phosphodiesterase and nucleotidyltransferase superfamilies, respectively. The active sites, separated by more than 30 A, contain bound nucleotides including an unusual (p)ppGpp derivative, GDP-2':3'-cyclic monophosphate. Reciprocal regulation of the antagonistic catalytic activities, suggested by the structure, is supported by mutagenesis experiments and appears to involve ligand-induced signal transmission between the two active sites.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Similarities between the Catalytic Domains of Rel[Seq], Human Phosphodiesterase (PDE) and Human DNA Polymerase Beta (pol β)Structural and topological diagrams highlighting equivalent folds and active-site residues for: (A) catalytic domain (residues 152−528) of PDE4; (B) Rel[Seq]1–385; (C) catalytic domain (residues 10−335) of pol β. Homologous structural elements are displayed as ribbons; nonequivalent regions as thin gray lines. Monomer 2 of Rel[Seq]1–385 is shown, with ppG2′:3′p, and GDP. Dark blue sphere, catalytic metal ion (Zn^2+ for PDE4; Mn^2+ for Rel[Seq]). Conserved residues of the H−X[(n)]−HD−X[(n)]−D metal binding tetrad are labeled in the accompanying topology diagrams (A and B). Two of the three catalytic carboxylates in pol β (Asp190 and Asp256, C) are also found in Rel[Seq] (Asp264 and Glu323, B). Rel/Spo enzymes lack a counterpart for the second carboxylate of the D-X-D motif in NTases (Asp192 in pol β).
Figure 4.
Figure 4. Conformations of the Synthetase Site in Rel[Seq]1–385 and a Superposition with pol β(A) The synthetase-ON conformation (monomer 1). Coloring is according to Figure 1; individual structural elements are labeled in red. The nucleophilic O3′ of GDP is marked. The final 2mFo-DFc electron density map, shown for GDP (blue mesh), is contoured at 1.0 σ. Selected H-bonds are shown as gray dashed lines. The catalytic loop (α13/β4) harboring Asp264 is stabilized in a 3[10]-helical conformation through multiple van der Waals interactions (represented by black double-arrow dashed lines) with loop α11/α12 and the first two turns of α12 (labeled t1, t2). Chain traces extending from loops α11/α12, β3/α13, and α13/β4 are not visible due to image slab restrictions.(B) The synthetase-OFF conformation (monomer 2). The α11/α12 loop and the first two turns of α12 are disordered; the resulting elimination of van der Waals contacts to the catalytic loop (α13/β4) leads to (1), partial refolding of the latter into an N-terminal extension of β4, and (2), disorder of residues 254–261 including the remaining residues of the catalytic loop and the C terminus of α13.(C) Representative electron density in the synthetase site of monomer 1. GDP is highlighted in orange. The final 2mFo-DFc electron density map (1.0 σ) is overlaid as blue mesh.(D) Stereographic superposition between the synthetase site of Rel[Seq]1–385 (monomer 1) and the active site of pol β in the (pol β)·(gapped DNA)·(ddCTP) complex. The latter complex is rendered in gray shading with the exception of the primer 3′-terminal nucleotide (orange), ddCTP (cyan), and the two Mg^2+ ions (dark blue). Rel[Seq]1–385 and its GDP ligand are colored according to (A). The putative catalytic carboxylates of Rel[Seq], Asp264 and Glu323, are N terminally frameshifted by two residues relative to their pol β counterparts (indicated by black arrows).
 
  The above figures are reprinted by permission from Cell Press: Cell (2004, 117, 57-68) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21338423 C.C.Boutte, and S.Crosson (2011).
The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment.
  Mol Microbiol, 80, 695-714.  
21461674 D.Ning, Y.Qian, X.Miao, and C.Wen (2011).
Role of the all1549 (ana-rsh) Gene, A relA/spoT Homolog, of the Cyanobacterium Anabaena sp. PCC7120.
  Curr Microbiol, 62, 1767-1773.  
20717661 P.Stevens, L.S.van Overbeek, and J.D.van Elsas (2011).
Ralstonia solanacearum ΔPGI-1 strain KZR-5 is affected in growth, response to cold stress and invasion of tomato.
  Microb Ecol, 61, 101-112.  
20818390 D.Sun, G.Lee, J.H.Lee, H.Y.Kim, H.W.Rhee, S.Y.Park, K.J.Kim, Y.Kim, B.Y.Kim, J.I.Hong, C.Park, H.E.Choy, J.H.Kim, Y.H.Jeon, and J.Chung (2010).
A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses.
  Nat Struct Mol Biol, 17, 1188-1194.
PDB codes: 3nqw 3nr1
20212088 T.Geiger, C.Goerke, M.Fritz, T.Schäfer, K.Ohlsen, M.Liebeke, M.Lalk, and C.Wolz (2010).
Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus.
  Infect Immun, 78, 1873-1883.  
20548948 W.Gao, K.Chua, J.K.Davies, H.J.Newton, T.Seemann, P.F.Harrison, N.E.Holmes, H.W.Rhee, J.I.Hong, E.L.Hartland, T.P.Stinear, and B.P.Howden (2010).
Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection.
  PLoS Pathog, 6, e1000944.  
20363937 Y.Zhang, E.L.Pohlmann, J.Serate, M.C.Conrad, and G.P.Roberts (2010).
Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein.
  J Bacteriol, 192, 2711-2721.  
18996989 A.Battesti, and E.Bouveret (2009).
Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction.
  J Bacteriol, 191, 616-624.  
19460094 A.Boehm, S.Steiner, F.Zaehringer, A.Casanova, F.Hamburger, D.Ritz, W.Keck, M.Ackermann, T.Schirmer, and U.Jenal (2009).
Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress.
  Mol Microbiol, 72, 1500-1516.  
19016882 A.Danchin (2009).
Bacteria as computers making computers.
  FEMS Microbiol Rev, 33, 3.  
19298370 B.Das, R.R.Pal, S.Bag, and R.K.Bhadra (2009).
Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
  Mol Microbiol, 72, 380-398.  
19201802 H.M.Gan, L.Buckley, E.Szegedi, A.O.Hudson, and M.A.Savka (2009).
Identification of an rsh gene from a Novosphingobium sp. necessary for quorum-sensing signal accumulation.
  J Bacteriol, 191, 2551-2560.  
19426208 K.M.Kazmierczak, K.J.Wayne, A.Rechtsteiner, and M.E.Winkler (2009).
Roles of rel(Spn) in stringent response, global regulation and virulence of serotype 2 Streptococcus pneumoniae D39.
  Mol Microbiol, 72, 590-611.  
19366688 K.Podzelinska, S.M.He, M.Wathier, A.Yakunin, M.Proudfoot, B.Hove-Jensen, D.L.Zechel, and Z.Jia (2009).
Structure of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway for Phosphonate Degradation.
  J Biol Chem, 284, 17216-17226.  
19201753 M.Sajish, S.Kalayil, S.K.Verma, V.K.Nandicoori, and B.Prakash (2009).
The significance of EXDD and RXKD motif conservation in Rel proteins.
  J Biol Chem, 284, 9115-9123.  
19438719 R.Mega, N.Kondo, N.Nakagawa, S.Kuramitsu, and R.Masui (2009).
Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities.
  FEBS J, 276, 3211-3221.  
19346251 T.Ooga, Y.Ohashi, S.Kuramitsu, Y.Koyama, M.Tomita, T.Soga, and R.Masui (2009).
Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium thermus thermophilus.
  J Biol Chem, 284, 15549-15556.  
19756011 T.Schirmer, and U.Jenal (2009).
Structural and mechanistic determinants of c-di-GMP signalling.
  Nat Rev Microbiol, 7, 724-735.  
18359660 A.Srivatsan, and J.D.Wang (2008).
Control of bacterial transcription, translation and replication by (p)ppGpp.
  Curr Opin Microbiol, 11, 100-105.  
17968531 B.Das, and R.K.Bhadra (2008).
Molecular characterization of vibrio cholerae DeltarelA DeltaspoT double mutants.
  Arch Microbiol, 189, 227-238.  
18757823 B.Spira, X.Hu, and T.Ferenci (2008).
Strain variation in ppGpp concentration and RpoS levels in laboratory strains of Escherichia coli K-12.
  Microbiology, 154, 2887-2895.  
18723629 J.A.Lesley, and L.Shapiro (2008).
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.
  J Bacteriol, 190, 6867-6880.  
18454629 K.Potrykus, and M.Cashel (2008).
(p)ppGpp: still magical?
  Annu Rev Microbiol, 62, 35-51.  
18353368 M.D.Zimmerman, M.Proudfoot, A.Yakunin, and W.Minor (2008).
Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5'-deoxyribonucleotidase YfbR from Escherichia coli.
  J Mol Biol, 378, 215-226.
PDB codes: 2paq 2par 2pau
17951382 M.M.Nascimento, J.A.Lemos, J.Abranches, V.K.Lin, and R.A.Burne (2008).
Role of RelA of Streptococcus mutans in global control of gene expression.
  J Bacteriol, 190, 28-36.  
17989916 N.Kondo, T.Nishikubo, T.Wakamatsu, H.Ishikawa, N.Nakagawa, S.Kuramitsu, and R.Masui (2008).
Insights into different dependence of dNTP triphosphohydrolase on metal ion species from intracellular ion concentrations in Thermus thermophilus.
  Extremophiles, 12, 217-223.  
18532980 R.Harinarayanan, H.Murphy, and M.Cashel (2008).
Synthetic growth phenotypes of Escherichia coli lacking ppGpp and transketolase A (tktA) are due to ppGpp-mediated transcriptional regulation of tktB.
  Mol Microbiol, 69, 882-894.  
18353782 S.Lee, M.H.Kim, B.S.Kang, J.S.Kim, G.H.Kim, Y.G.Kim, and K.J.Kim (2008).
Crystal structure of Escherichia coli MazG, the regulator of nutritional stress response.
  J Biol Chem, 283, 15232-15240.
PDB codes: 3cra 3crc
17640895 A.Bougdour, and S.Gottesman (2007).
ppGpp regulation of RpoS degradation via anti-adaptor protein IraP.
  Proc Natl Acad Sci U S A, 104, 12896-12901.  
17714452 J.A.Lemos, V.K.Lin, M.M.Nascimento, J.Abranches, and R.A.Burne (2007).
Three gene products govern (p)ppGpp production by Streptococcus mutans.
  Mol Microbiol, 65, 1568-1581.  
17616600 M.Jiang, S.M.Sullivan, P.K.Wout, and J.R.Maddock (2007).
G-protein control of the ribosome-associated stress response protein SpoT.
  J Bacteriol, 189, 6140-6147.  
17911108 M.Sajish, D.Tiwari, D.Rananaware, V.K.Nandicoori, and B.Prakash (2007).
A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins.
  J Biol Chem, 282, 34977-34983.  
17242516 N.Kondo, N.Nakagawa, A.Ebihara, L.Chen, Z.J.Liu, B.C.Wang, S.Yokoyama, S.Kuramitsu, and R.Masui (2007).
Structure of dNTP-inducible dNTP triphosphohydrolase: insight into broad specificity for dNTPs and triphosphohydrolase-type hydrolysis.
  Acta Crystallogr D Biol Crystallogr, 63, 230-239.
PDB code: 2dqb
17078815 A.Battesti, and E.Bouveret (2006).
Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism.
  Mol Microbiol, 62, 1048-1063.  
16672627 D.H.Wells, and E.C.Gaynor (2006).
Helicobacter pylori initiates the stringent response upon nutrient and pH downshift.
  J Bacteriol, 188, 3726-3729.  
16905100 J.Alvarado, A.Ghosh, T.Janovitz, A.Jauregui, M.S.Hasson, and D.A.Sanders (2006).
Origin of exopolyphosphatase processivity: Fusion of an ASKHA phosphotransferase and a cyclic nucleotide phosphodiesterase homolog.
  Structure, 14, 1263-1272.
PDB code: 1u6z
16343907 K.Braeken, M.Moris, R.Daniels, J.Vanderleyden, and J.Michiels (2006).
New horizons for (p)ppGpp in bacterial and plant physiology.
  Trends Microbiol, 14, 45-54.  
17015650 K.Kasai, T.Nishizawa, K.Takahashi, T.Hosaka, H.Aoki, and K.Ochi (2006).
Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
  J Bacteriol, 188, 7111-7122.  
17041036 L.N.DiDonato, S.A.Sullivan, B.A.Methé, K.P.Nevin, R.England, and D.R.Lovley (2006).
Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens.
  J Bacteriol, 188, 8469-8478.  
16803581 M.Dozot, R.A.Boigegrain, R.M.Delrue, R.Hallez, S.Ouahrani-Bettache, I.Danese, J.J.Letesson, X.De Bolle, and S.Köhler (2006).
The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB.
  Cell Microbiol, 8, 1791-1802.  
16895465 U.Jenal, and J.Malone (2006).
Mechanisms of cyclic-di-GMP signaling in bacteria.
  Annu Rev Genet, 40, 385-407.  
16731979 V.Jain, R.Saleem-Batcha, A.China, and D.Chatterji (2006).
Molecular dissection of the mycobacterial stringent response protein Rel.
  Protein Sci, 15, 1449-1464.  
16030199 A.Calderón-Flores, G.Du Pont, A.Huerta-Saquero, H.Merchant-Larios, L.Servín-González, and S.Durán (2005).
The stringent response is required for amino acid and nitrate utilization, nod factor regulation, nodulation, and nitrogen fixation in Rhizobium etli.
  J Bacteriol, 187, 5075-5083.  
15853883 D.Vinella, C.Albrecht, M.Cashel, and R.D'Ari (2005).
Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli.
  Mol Microbiol, 56, 958-970.  
15984913 H.Ogata, P.Renesto, S.Audic, C.Robert, G.Blanc, P.E.Fournier, H.Parinello, J.M.Claverie, and D.Raoult (2005).
The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite.
  PLoS Biol, 3, e248.  
15686546 J.D.Gralla (2005).
Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase-binding protein.
  Mol Microbiol, 55, 973-977.  
15866041 L.U.Magnusson, A.Farewell, and T.Nyström (2005).
ppGpp: a global regulator in Escherichia coli.
  Trends Microbiol, 13, 236-242.  
15210699 A.F.Yakunin, M.Proudfoot, E.Kuznetsova, A.Savchenko, G.Brown, C.H.Arrowsmith, and A.M.Edwards (2004).
The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2',3'-cyclic phosphodiesterase, 2'-nucleotidase, and phosphatase activities.
  J Biol Chem, 279, 36819-36827.  
15294157 B.J.Paul, M.M.Barker, W.Ross, D.A.Schneider, C.Webb, J.W.Foster, and R.L.Gourse (2004).
DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP.
  Cell, 118, 311-322.  
15568992 B.J.Paul, W.Ross, T.Gaal, and R.L.Gourse (2004).
rRNA transcription in Escherichia coli.
  Annu Rev Genet, 38, 749-770.  
15489502 M.Proudfoot, E.Kuznetsova, G.Brown, N.N.Rao, M.Kitagawa, H.Mori, A.Savchenko, and A.F.Yakunin (2004).
General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG.
  J Biol Chem, 279, 54687-54694.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer