PDBsum entry 1tde

Go to PDB code: 
protein ligands links
Oxidoreductase(flavoenzyme) PDB id
Protein chain
316 a.a. *
Waters ×492
* Residue conservation analysis
PDB id:
Name: Oxidoreductase(flavoenzyme)
Title: Crystal structure of escherichia coli thioredoxin reductase 2 angstrom resolution: implications for a large conformatio during catalysis
Structure: Thioredoxin reductase. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562
Biol. unit: Dimer (from PQS)
2.10Å     R-factor:   0.192    
Authors: G.Waksman,T.S.R.Krishna,C.H.Williams Junior,J.Kuriyan
Key ref: G.Waksman et al. (1994). Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. J Mol Biol, 236, 800-816. PubMed id: 8114095
14-Jan-94     Release date:   30-Nov-94    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P0A9P4  (TRXB_ECOLI) -  Thioredoxin reductase
321 a.a.
316 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Thioredoxin-disulfide reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thioredoxin + NADP+ = thioredoxin disulfide + NADPH
Bound ligand (Het Group name = FAD)
matches with 71.19% similarity
= thioredoxin disulfide
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     oxidation-reduction process   2 terms 
  Biochemical function     protein binding     4 terms  


J Mol Biol 236:800-816 (1994)
PubMed id: 8114095  
Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
G.Waksman, T.S.Krishna, C.H.Williams, J.Kuriyan.
The crystal structures of three forms of Escherichia coli thioredoxin reductase have been refined: the oxidized form of the wild-type enzyme at 2.1 A resolution, a variant containing a cysteine to serine mutation at the active site (Cys138Ser) at 2.0 A resolution, and a complex of this variant with nicotinamide adenine dinucleotide phosphate (NADP+) at 2.3 A resolution. The enzyme mechanism involves the transfer of reducing equivalents from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to a disulfide bond in the enzyme, via a flavin adenine dinucleotide (FAD). Thioredoxin reductase contains FAD and NADPH binding domains that are structurally similar to the corresponding domains of the related enzyme glutathione reductase. The relative orientation of these domains is, however, very different in the two enzymes: when the FAD domains of thioredoxin and glutathione reductases are superimposed, the NADPH domain of one is rotated by 66 degrees with respect to the other. The observed binding mode of NADP+ in thioredoxin reductase is non-productive in that the nicotinamide ring is more than 17 A from the flavin ring system. While in glutathione reductase the redox active disulfide is located in the FAD domain, in thioredoxin reductase it is in the NADPH domain and is part of a four-residue sequence (Cys-Ala-Thr-Cys) that is close in structure to the corresponding region of thioredoxin (Cys-Gly-Pro-Cys), with a root-mean-square deviation of 0.22 A for atoms in the disulfide bonded ring. There are no significant conformational differences between the structure of the wild-type enzyme and that of the Cys138Ser mutant, except that a disulfide bond is not present in the latter. The disulfide bond is positioned productively in this conformation of the enzyme, i.e. it stacks against the flavin ring system in a position that would facilitate its reduction by the flavin. However, the cysteine residues are relatively inaccessible for interaction with the substrate, thioredoxin. These results suggest that thioredoxin reductase must undergo conformational changes during enzyme catalysis. All three structures reported here are for the same conformation of the enzyme and no direct evidence is available as yet for such conformational changes. The simplest possibility is that the NADPH domain rotates between the conformation observed here and an orientation similar to that seen in glutathione reductase. This would alternately place the nicotinamide ring and the disulfide bond near the flavin ring, and expose the cysteine residues for reaction with thioredoxin in the hypothetical conformation.(ABSTRACT TRUNCATED AT 400 WORDS)

Literature references that cite this PDB file's key reference

  PubMed id Reference
20177947 N.Nagahara (2011).
Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
  Amino Acids, 41, 59-72.  
20304799 D.Parsonage, D.C.Desrosiers, K.R.Hazlett, Y.Sun, K.J.Nelson, D.L.Cox, J.D.Radolf, and L.B.Poole (2010).
Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum.
  Proc Natl Acad Sci U S A, 107, 6240-6245.  
20878669 H.Komori, D.Seo, T.Sakurai, and Y.Higuchi (2010).
Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity.
  Protein Sci, 19, 2279-2290.
PDB codes: 3lzw 3lzx
19933368 J.Obiero, V.Pittet, S.A.Bonderoff, and D.A.Sanders (2010).
Thioredoxin system from Deinococcus radiodurans.
  J Bacteriol, 192, 494-501.
PDB code: 2q7v
19549597 C.Wang, S.R.Wesener, H.Zhang, and Y.Q.Cheng (2009).
An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide.
  Chem Biol, 16, 585-593.  
19446492 J.P.Jacquot, H.Eklund, N.Rouhier, and P.Schürmann (2009).
Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms.
  Trends Plant Sci, 14, 336-343.  
19690371 K.G.Kirkensgaard, P.Hägglund, C.Finnie, B.Svensson, and A.Henriksen (2009).
Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism.
  Acta Crystallogr D Biol Crystallogr, 65, 932-941.
PDB code: 2whd
19381366 R.Cotugno, M.Rosaria Ruocco, S.Marco, P.Falasca, G.Evangelista, G.Raimo, A.Chambery, A.Di Maro, M.Masullo, and E.De Vendittis (2009).
Differential cold-adaptation among protein components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125.
  Mol Biosyst, 5, 519-528.  
18717593 H.H.Hernandez, O.A.Jaquez, M.J.Hamill, S.J.Elliott, and C.L.Drennan (2008).
Thioredoxin reductase from Thermoplasma acidophilum: a new twist on redox regulation.
  Biochemistry, 47, 9728-9737.
PDB code: 3cty
  18323604 N.Muraki, D.Seo, T.Shiba, T.Sakurai, and G.Kurisu (2008).
Crystallization and preliminary X-ray studies of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 186-189.  
17636129 G.Hagelueken, L.Wiehlmann, T.M.Adams, H.Kolmar, D.W.Heinz, B.Tümmler, and W.D.Schubert (2007).
Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa.
  Proc Natl Acad Sci U S A, 104, 12276-12281.
PDB codes: 2v3a 2v3b
17130129 N.Nagahara, T.Yoshii, Y.Abe, and T.Matsumura (2007).
Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation.
  J Biol Chem, 282, 1561-1569.  
17441733 T.J.Jönsson, H.R.Ellis, and L.B.Poole (2007).
Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system.
  Biochemistry, 46, 5709-5721.  
17582174 T.N.Gustafsson, T.Sandalova, J.Lu, A.Holmgren, and G.Schneider (2007).
High-resolution structures of oxidized and reduced thioredoxin reductase from Helicobacter pylori.
  Acta Crystallogr D Biol Crystallogr, 63, 833-843.
PDB codes: 2q0k 2q0l
17303556 Y.Li, Y.Hu, X.Zhang, H.Xu, E.Lescop, B.Xia, and C.Jin (2007).
Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis.
  J Biol Chem, 282, 11078-11083.
PDB codes: 2gzy 2gzz 2ipa
15687204 C.Dahl, S.Engels, A.S.Pott-Sperling, A.Schulte, J.Sander, Y.Lübbe, O.Deuster, and D.C.Brune (2005).
Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum.
  J Bacteriol, 187, 1392-1404.  
15686529 C.Renner, U.Kusebauch, M.Löweneck, A.G.Milbradt, and L.Moroder (2005).
Azobenzene as photoresponsive conformational switch in cyclic peptides.
  J Pept Res, 65, 4.  
15629931 K.Vido, H.Diemer, A.Van Dorsselaer, E.Leize, V.Juillard, A.Gruss, and P.Gaudu (2005).
Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis.
  J Bacteriol, 187, 601-610.  
  16511049 M.A.Oliveira, K.F.Discola, S.V.Alves, J.A.Barbosa, F.J.Medrano, L.E.Netto, and B.G.Guimarães (2005).
Crystallization and preliminary X-ray diffraction analysis of NADPH-dependent thioredoxin reductase I from Saccharomyces cerevisiae.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 387-390.  
16301794 M.Akif, K.Suhre, C.Verma, and S.C.Mande (2005).
Conformational flexibility of Mycobacterium tuberculosis thioredoxin reductase: crystal structure and normal-mode analysis.
  Acta Crystallogr D Biol Crystallogr, 61, 1603-1611.
PDB code: 2a87
16115028 M.Thiele, and J.Bernhagen (2005).
Link between macrophage migration inhibitory factor and cellular redox regulation.
  Antioxid Redox Signal, 7, 1234-1248.  
15976866 P.P.Phadnis, and G.Mugesh (2005).
Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies.
  Org Biomol Chem, 3, 2476-2481.  
15010540 E.Hitt, and M.L.Ludwig (2004).
Biography of Martha L. Ludwig.
  Proc Natl Acad Sci U S A, 101, 3727-3728.  
15039584 M.Akif, R.Chauhan, and S.C.Mande (2004).
Expression, purification, crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis thioredoxin reductase.
  Acta Crystallogr D Biol Crystallogr, 60, 777-779.  
14595672 S.Gromer, S.Urig, and K.Becker (2004).
The thioredoxin system--from science to clinic.
  Med Res Rev, 24, 40-89.  
15066170 W.Eisenreich, K.Kemter, A.Bacher, S.B.Mulrooney, C.H.Williams, and F.Müller (2004).
13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins.
  Eur J Biochem, 271, 1437-1452.  
12796500 M.T.Nguyen, J.Beck, H.Lue, H.Fünfzig, R.Kleemann, P.Koolwijk, A.Kapurniotu, and J.Bernhagen (2003).
A 16-residue peptide fragment of macrophage migration inhibitory factor, MIF-(50-65), exhibits redox activity and has MIF-like biological functions.
  J Biol Chem, 278, 33654-33671.  
12079785 C.Cabrele, S.Fiori, S.Pegoraro, and L.Moroder (2002).
Redox-active cyclic bis(cysteinyl)peptides as catalysts for in vitro oxidative protein folding.
  Chem Biol, 9, 731-740.  
11827546 C.M.Reynolds, J.Meyer, and L.B.Poole (2002).
An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.
  Biochemistry, 41, 1990-2001.  
11300770 C.M.Reynolds, and L.B.Poole (2001).
Activity of one of two engineered heterodimers of AhpF, the NADH:peroxiredoxin oxidoreductase from Salmonella typhimurium, reveals intrasubunit electron transfer between domains.
  Biochemistry, 40, 3912-3919.  
11567095 P.A.van den Berg, S.B.Mulrooney, B.Gobets, I.H.van Stokkum, A.van Hoek, C.H.Williams, and A.J.Visser (2001).
Exploring the conformational equilibrium of E. coli thioredoxin reductase: characterization of two catalytically important states by ultrafast flavin fluorescence spectroscopy.
  Protein Sci, 10, 2037-2049.  
11481439 T.Sandalova, L.Zhong, Y.Lindqvist, A.Holmgren, and G.Schneider (2001).
Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme.
  Proc Natl Acad Sci U S A, 98, 9533-9538.
PDB code: 1h6v
11300769 Z.A.Wood, L.B.Poole, and P.A.Karplus (2001).
Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis.
  Biochemistry, 40, 3900-3911.
PDB code: 1hyu
10666639 B.Bieger, and L.O.Essen (2000).
Crystallization and preliminary X-ray analysis of the catalytic core of the alkylhydroperoxide reductase component AhpF from Escherichia coli.
  Acta Crystallogr D Biol Crystallogr, 56, 92-94.  
10947986 B.W.Lennon, C.H.Williams, and M.L.Ludwig (2000).
Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase.
  Science, 289, 1190-1194.
PDB code: 1f6m
11012662 C.H.Williams, L.D.Arscott, S.Müller, B.W.Lennon, M.L.Ludwig, P.F.Wang, D.M.Veine, K.Becker, and R.H.Schirmer (2000).
Thioredoxin reductase two modes of catalysis have evolved.
  Eur J Biochem, 267, 6110-6117.  
10913298 C.M.Reynolds, and L.B.Poole (2000).
Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity.
  Biochemistry, 39, 8859-8869.  
10684609 D.D.Clark, J.R.Allen, and S.A.Ensign (2000).
Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system.
  Biochemistry, 39, 1294-1304.  
10998235 G.A.Ziegler, and G.E.Schulz (2000).
Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family.
  Biochemistry, 39, 10986-10995.
PDB codes: 1e1k 1e1l 1e1m 1e1n
11213487 J.Qin, Y.Yang, A.Velyvis, and A.Gronenborn (2000).
Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes.
  Antioxid Redox Signal, 2, 827-840.  
10828978 L.B.Poole, A.Godzik, A.Nayeem, and J.D.Schmitt (2000).
AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC.
  Biochemistry, 39, 6602-6615.  
11012664 L.B.Poole, C.M.Reynolds, Z.A.Wood, P.A.Karplus, H.R.Ellis, and M.Li Calzi (2000).
AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase.
  Eur J Biochem, 267, 6126-6133.  
10089430 A.Mac Sweeney, A.D'Arcy, T.M.Higgins, S.G.Mayhew, D.Toomey, and M.A.Walsh (1999).
Crystallization and preliminary crystallographic analysis of an NADH oxidase that functions in peroxide reduction in Thermus aquaticus YT-1.
  Acta Crystallogr D Biol Crystallogr, 55, 297-298.  
10425677 A.Mattevi, G.Tedeschi, L.Bacchella, A.Coda, A.Negri, and S.Ronchi (1999).
Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family.
  Structure, 7, 745-756.
PDB code: 1chu
10625445 A.R.Crofts, M.Guergova-Kuras, L.Huang, R.Kuras, Z.Zhang, and E.A.Berry (1999).
Mechanism of ubiquinol oxidation by the bc(1) complex: role of the iron sulfur protein and its mobility.
  Biochemistry, 38, 15791-15806.  
  10595539 B.W.Lennon, C.H.Williams, and M.L.Ludwig (1999).
Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor.
  Protein Sci, 8, 2366-2379.
PDB code: 1cl0
10354416 D.I.Svergun (1999).
Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing.
  Biophys J, 76, 2879-2886.  
10103021 G.Tedeschi, A.Negri, F.Ceciliani, A.Mattevi, and S.Ronchi (1999).
Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis.
  Eur J Biochem, 260, 896-903.  
  10493573 J.J.Tanner, S.C.Tu, L.J.Barbour, C.L.Barnes, and K.L.Krause (1999).
Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.
  Protein Sci, 8, 1725-1732.
PDB code: 2bkj
10074377 K.L.Hoober, and C.Thorpe (1999).
Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation.
  Biochemistry, 38, 3211-3217.  
10498962 Y.Meyer, L.Verdoucq, and F.Vignols (1999).
Plant thioredoxins and glutaredoxins: identity and putative roles.
  Trends Plant Sci, 4, 388-394.  
9593186 Groot, S.Hayward, D.M.van Aalten, A.Amadei, and H.J.Berendsen (1998).
Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data.
  Proteins, 31, 116-127.  
9482874 D.I.Svergun, S.Richard, M.H.Koch, Z.Sayers, S.Kuprin, and G.Zaccai (1998).
Protein hydration in solution: experimental observation by x-ray and neutron scattering.
  Proc Natl Acad Sci U S A, 95, 2267-2272.  
  9521113 D.M.Veine, K.Ohnishi, and C.H.Williams (1998).
Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines.
  Protein Sci, 7, 369-375.  
  9655349 D.M.Veine, S.B.Mulrooney, P.F.Wang, and C.H.Williams (1998).
Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin.
  Protein Sci, 7, 1441-1450.  
9556556 J.Nordberg, L.Zhong, A.Holmgren, and E.S.Arnér (1998).
Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue.
  J Biol Chem, 273, 10835-10842.  
9535831 L.Zhong, E.S.Arnér, J.Ljung, F.Aslund, and A.Holmgren (1998).
Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue.
  J Biol Chem, 273, 8581-8591.  
9235991 B.W.Lennon, and C.H.Williams (1997).
Reductive half-reaction of thioredoxin reductase from Escherichia coli.
  Biochemistry, 36, 9464-9477.  
  9336832 C.E.Bell, T.O.Yeates, and D.Eisenberg (1997).
Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes.
  Protein Sci, 6, 2084-2096.  
9108027 L.D.Arscott, S.Gromer, R.H.Schirmer, K.Becker, and C.H.Williams (1997).
The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli.
  Proc Natl Acad Sci U S A, 94, 3621-3626.  
9309223 M.Eriksson, U.Uhlin, S.Ramaswamy, M.Ekberg, K.Regnström, B.M.Sjöberg, and H.Eklund (1997).
Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding.
  Structure, 5, 1077-1092.
PDB codes: 1r1r 2r1r 3r1r 4r1r
9341228 M.Li Calzi, and L.B.Poole (1997).
Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase.
  Biochemistry, 36, 13357-13364.  
  9336841 S.B.Mulrooney, and C.H.Williams (1997).
Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation.
  Protein Sci, 6, 2188-2195.  
9368022 T.W.Gilberger, R.D.Walter, and S.Müller (1997).
Identification and characterization of the functional amino acids at the active site of the large thioredoxin reductase from Plasmodium falciparum.
  J Biol Chem, 272, 29584-29589.  
8664260 B.W.Lennon, and C.H.Williams (1996).
Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis.
  Biochemistry, 35, 4704-4712.  
  8880899 G.Van Driessche, M.Koh, Z.W.Chen, F.S.Mathews, T.E.Meyer, R.G.Bartsch, M.A.Cusanovich, and J.J.Van Beeumen (1996).
Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum.
  Protein Sci, 5, 1753-1764.  
8555199 L.B.Poole (1996).
Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction.
  Biochemistry, 35, 65-75.  
8626570 M.Andersson, A.Holmgren, and G.Spyrou (1996).
NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity.
  J Biol Chem, 271, 10116-10120.  
8664271 P.F.Wang, D.M.Veine, S.H.Ahn, and C.H.Williams (1996).
A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: preparation and characterization.
  Biochemistry, 35, 4812-4819.  
7476189 B.Wieles, D.van Soolingen, A.Holmgren, R.Offringa, T.Ottenhoff, and J.Thole (1995).
Unique gene organization of thioredoxin and thioredoxin reductase in Mycobacterium leprae.
  Mol Microbiol, 16, 921-929.  
7592733 B.Wieles, J.van Noort, J.W.Drijfhout, R.Offringa, A.Holmgren, and T.H.Ottenhoff (1995).
Purification and functional analysis of the Mycobacterium leprae thioredoxin/thioredoxin reductase hybrid protein.
  J Biol Chem, 270, 25604-25606.  
7876079 E.S.Arnér, M.Björnstedt, and A.Holmgren (1995).
1-Chloro-2,4-dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase. Loss of thioredoxin disulfide reductase activity is accompanied by a large increase in NADPH oxidase activity.
  J Biol Chem, 270, 3479-3482.  
8604436 G.Powis, M.Briehl, and J.Oblong (1995).
Redox signalling and the control of cell growth and death.
  Pharmacol Ther, 68, 149-173.  
7726998 K.Ohnishi, Y.Niimura, M.Hidaka, H.Masaki, H.Suzuki, T.Uozumi, and T.Nishino (1995).
Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis.
  J Biol Chem, 270, 5812-5817.  
7925445 R.Hedderich, J.Koch, D.Linder, and R.K.Thauer (1994).
The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases.
  Eur J Biochem, 225, 253-261.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.