PDBsum entry 1sml

Go to PDB code: 
protein metals links
Hydrolase PDB id
Protein chain
266 a.a. *
_ZN ×2
Waters ×297
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Metallo beta lactamase l1 from stenotrophomonas maltophilia
Structure: Protein (penicillinase). Chain: a. Engineered: yes
Source: Stenotrophomonas maltophilia. Organism_taxid: 40324. Strain: iid 1275. Cellular_location: periplasm. Gene: l1. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: l1 gene from s. Maltophilia over expressed in e. Coli
Biol. unit: Tetramer (from PDB file)
1.70Å     R-factor:   0.180     R-free:   0.233
Authors: J.H.Ullah,T.R.Walsh,I.A.Taylor,D.C.Emery,C.S.Verma, S.J.Gamblin,J.Spencer
Key ref:
J.H.Ullah et al. (1998). The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J Mol Biol, 284, 125-136. PubMed id: 9811546 DOI: 10.1006/jmbi.1998.2148
22-Sep-98     Release date:   20-Sep-99    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P52700  (BLA1_STEMA) -  Metallo-beta-lactamase L1
290 a.a.
266 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Beta-lactamase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

Penicillin Biosynthesis and Metabolism
      Reaction: A beta-lactam + H2O = a substituted beta-amino acid
      Cofactor: Zinc
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     periplasmic space   1 term 
  Biological process     response to antibiotic   2 terms 
  Biochemical function     hydrolase activity     4 terms  


DOI no: 10.1006/jmbi.1998.2148 J Mol Biol 284:125-136 (1998)
PubMed id: 9811546  
The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution.
J.H.Ullah, T.R.Walsh, I.A.Taylor, D.C.Emery, C.S.Verma, S.J.Gamblin, J.Spencer.
The structure of the L1 metallo-beta-lactamase from the opportunistic pathogen Stenotrophomonas maltophilia has been determined at 1.7 A resolution by the multiwavelength anomalous dispersion (MAD) approach exploiting both the intrinsic binuclear zinc centre and incorporated selenomethionine residues. L1 is unique amongst all known beta-lactamases in that it exists as a tetramer. The protein exhibits the alphabeta/betaalpha fold found only in the metallo-beta-lactamases and displays several unique features not previously observed in these enzymes. These include a disulphide bridge and two substantially elongated loops connected to the active site of the enzyme. Two closely spaced zinc ions are bound at the active site with tetrahedral (Zn1) and trigonal bipyramidal (Zn2) co-ordination, respectively; these are bridged by a water molecule which we propose acts as the nucleophile in the hydrolytic reaction. Ligation of the second zinc ion involves both residues and geometry which have not been previously observed in the metallo-beta-lactamases. Simulated binding of the substrates ampicillin, ceftazidime and imipenem suggests that the substrate is able to bind to the enzyme in a variety of different conformations whose common features are direct interactions of the beta-lactam carbonyl oxygen and nitrogen with the zinc ions and of the beta-lactam carboxylate with Ser187. We describe a catalytic mechanism whose principal features are a nucleophilic attack of the bridging water on the beta-lactam carbonyl carbon, electrostatic stabilisation of a negatively charged tetrahedral transition state and protonation of the beta-lactam nitrogen by a second water molecule co-ordinated by Zn2. Further, we propose that direct metal:substrate interactions provide a substantial contribution to substrate binding and that this may explain the lack of specificity which is a feature of this class of enzyme.
  Selected figure(s)  
Figure 5.
Figure 5. Active sites of the metallo-b-lactamases from S. maltophilia (right, red) and B. fragilis (left, blue) shown in approximately the same orientation. The centre panel shows an overlay of the two structures. Zinc co-ordinating interactions are shown as dotted lines for ligands to Zn1 and apical ligands to Zn2; continuous lines show planar ligands to Zn2. All residue numbers refer to the mature, processed proteins.
Figure 6.
Figure 6. Lowest energy structures for substrate molecules docked into the active site of S. maltophilia L1 b-lactamase and subjected to energy minimisation. Left panel shows eight structures for ampicillin, centre panel six structures for ceftazidime, and right panel ten structures for imipenem. Grey spheres are used to depict zinc ions and red spheres for water molecules.
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1998, 284, 125-136) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21299838 L.E.Horsfall, Y.Izougarhane, P.Lassaux, N.Selevsek, B.M.Liénard, L.Poirel, M.B.Kupper, K.M.Hoffmann, J.M.Frère, M.Galleni, and C.Bebrone (2011).
Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.
  FEBS J, 278, 1252-1263.  
20669241 A.L.Stamp, P.Owen, K.E.Omari, C.E.Nichols, M.Lockyer, H.K.Lamb, I.G.Charles, A.R.Hawkins, and D.K.Stammers (2010).
Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase.
  Protein Sci, 19, 1897-1905.
PDB code: 2xf4
20308383 L.Poirel, J.M.Rodríguez-Martínez, N.Al Naiemi, Y.J.Debets-Ossenkopp, and P.Nordmann (2010).
Characterization of DIM-1, an integron-encoded metallo-beta-lactamase from a Pseudomonas stutzeri clinical isolate in The Netherlands.
  Antimicrob Agents Chemother, 54, 2420-2424.  
20305272 Y.Yamaguchi, N.Takashio, J.Wachino, Y.Yamagata, Y.Arakawa, K.Matsuda, and H.Kurosaki (2010).
Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution.
  J Biochem, 147, 905-915.
PDB code: 3l6n
19651913 C.Bebrone, H.Delbrück, M.B.Kupper, P.Schlömer, C.Willmann, J.M.Frère, R.Fischer, M.Galleni, and K.M.Hoffmann (2009).
The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site.
  Antimicrob Agents Chemother, 53, 4464-4471.
PDB codes: 3f9o 3fai
19039608 F.R.Salsbury, M.W.Crowder, S.F.Kingsmore, and J.J.Huntley (2009).
Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor.
  J Mol Model, 15, 133-145.  
19735113 P.Limphong, G.Nimako, P.W.Thomas, W.Fast, C.A.Makaroff, and M.W.Crowder (2009).
Arabidopsis thaliana mitochondrial glyoxalase 2-1 exhibits beta-lactamase activity.
  Biochemistry, 48, 8491-8493.  
19228020 Z.Hu, L.J.Spadafora, C.E.Hajdin, B.Bennett, and M.W.Crowder (2009).
Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1.
  Biochemistry, 48, 2981-2989.  
18648861 A.Tamilselvi, and G.Mugesh (2008).
Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues.
  J Biol Inorg Chem, 13, 1039-1053.  
18767153 A.Yamamura, J.Ohtsuka, K.Kubota, Y.Agari, A.Ebihara, N.Nakagawa, K.Nagata, and M.Tanokura (2008).
Crystal structure of TTHA1429, a novel metallo-beta-lactamase superfamily protein from Thermus thermophilus HB8.
  Proteins, 73, 1053-1057.
PDB code: 2zo4
18563261 B.M.Liénard, G.Garau, L.Horsfall, A.I.Karsisiotis, C.Damblon, P.Lassaux, C.Papamicael, G.C.Roberts, M.Galleni, O.Dideberg, J.M.Frère, and C.J.Schofield (2008).
Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols.
  Org Biomol Chem, 6, 2282-2294.
PDB codes: 2qds 2qdt
18652482 L.A.Abriata, L.J.González, L.I.Llarrull, P.E.Tomatis, W.K.Myers, A.L.Costello, D.L.Tierney, and A.J.Vila (2008).
Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive.
  Biochemistry, 47, 8590-8599.  
18980308 M.F.Tioni, L.I.Llarrull, A.A.Poeylaut-Palena, M.A.Martí, M.Saggu, G.R.Periyannan, E.G.Mata, B.Bennett, D.H.Murgida, and A.J.Vila (2008).
Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase.
  J Am Chem Soc, 130, 15852-15863.  
18551183 M.I.Page, and A.Badarau (2008).
The mechanisms of catalysis by metallo beta-lactamases.
  Bioinorg Chem Appl, (), 576297.  
18443127 M.Stoczko, J.M.Frère, G.M.Rossolini, and J.D.Docquier (2008).
Functional diversity among metallo-beta-lactamases: characterization of the CAR-1 enzyme of Erwinia carotovora.
  Antimicrob Agents Chemother, 52, 2473-2479.  
18528987 N.Sharma, Z.Hu, M.W.Crowder, and B.Bennett (2008).
Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions.
  J Am Chem Soc, 130, 8215-8222.  
18230049 V.Gupta (2008).
Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species.
  Expert Opin Investig Drugs, 17, 131-143.  
18831550 Z.Hu, G.Periyannan, B.Bennett, and M.W.Crowder (2008).
Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.
  J Am Chem Soc, 130, 14207-14216.  
18445468 Z.Hu, G.R.Periyannan, and M.W.Crowder (2008).
Folding strategy to prepare Co(II)-substituted metallo-beta-lactamase L1.
  Anal Biochem, 378, 177-183.  
18597493 Z.Hu, T.S.Gunasekera, L.Spadafora, B.Bennett, and M.W.Crowder (2008).
Metal content of metallo-beta-lactamase L1 is determined by the bioavailability of metal ions.
  Biochemistry, 47, 7947-7953.  
17630334 A.M.Queenan, and K.Bush (2007).
Carbapenemases: the versatile beta-lactamases.
  Clin Microbiol Rev, 20, 440.  
17266723 D.A.Alfredson, and V.Korolik (2007).
Identification of putative zinc hydrolase genes of the metallo-beta-lactamase superfamily from Campylobacter jejuni.
  FEMS Immunol Med Microbiol, 49, 159-164.  
17623844 F.Simona, A.Magistrato, D.M.Vera, G.Garau, A.J.Vila, and P.Carloni (2007).
Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila.
  Proteins, 69, 595-605.  
17403673 J.Morán-Barrio, J.M.González, M.N.Lisa, A.L.Costello, M.D.Peraro, P.Carloni, B.Bennett, D.L.Tierney, A.S.Limansky, A.M.Viale, and A.J.Vila (2007).
The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site.
  J Biol Chem, 282, 18286-18293.  
17307979 L.E.Horsfall, G.Garau, B.M.Liénard, O.Dideberg, C.J.Schofield, J.M.Frère, and M.Galleni (2007).
Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila.
  Antimicrob Agents Chemother, 51, 2136-2142.
PDB code: 2gkl
17426028 L.I.Llarrull, S.M.Fabiane, J.M.Kowalski, B.Bennett, B.J.Sutton, and A.J.Vila (2007).
Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity.
  J Biol Chem, 282, 18276-18285.
PDB code: 2uyx
17305336 M.Dal Peraro, A.J.Vila, P.Carloni, and M.L.Klein (2007).
Role of zinc content on the catalytic efficiency of B1 metallo beta-lactamases.
  J Am Chem Soc, 129, 2808-2816.  
16489411 A.Costello, G.Periyannan, K.W.Yang, M.W.Crowder, and D.L.Tierney (2006).
Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia.
  J Biol Inorg Chem, 11, 351-358.  
17128255 C.R.Mandel, S.Kaneko, H.Zhang, D.Gebauer, V.Vethantham, J.L.Manley, and L.Tong (2006).
Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease.
  Nature, 444, 953-956.
PDB codes: 2i7t 2i7v 2i7x
16423823 D.Xu, D.Xie, and H.Guo (2006).
Catalytic mechanism of class B2 metallo-beta-lactamase.
  J Biol Chem, 281, 8740-8747.  
16773613 G.Estiu, D.Suárez, and K.M.Merz (2006).
Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases.
  J Comput Chem, 27, 1240-1262.  
16937423 H.Kurosaki, Y.Yamaguchi, H.Yasuzawa, W.Jin, Y.Yamagata, and Y.Arakawa (2006).
Probing, inhibition, and crystallographic characterization of metallo-beta-lactamase (IMP-1) with fluorescent agents containing dansyl and thiol groups.
  ChemMedChem, 1, 969-972.
PDB code: 2doo
16406807 K.De Vriendt, G.Van Driessche, B.Devreese, C.Bebrone, C.Anne, J.M.Frère, M.Galleni, and J.Van Beeumen (2006).
Monitoring the zinc affinity of the metallo-beta-lactamase CphA by automated nanoESI-MS.
  J Am Soc Mass Spectrom, 17, 180-188.  
16723554 M.Stoczko, J.M.Frère, G.M.Rossolini, and J.D.Docquier (2006).
Postgenomic scan of metallo-beta-lactamase homologues in rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum.
  Antimicrob Agents Chemother, 50, 1973-1981.
PDB code: 2gmn
16939225 N.P.Sharma, C.Hajdin, S.Chandrasekar, B.Bennett, K.W.Yang, and M.W.Crowder (2006).
Mechanistic studies on the mononuclear ZnII-containing metallo-beta-lactamase ImiS from Aeromonas sobria.
  Biochemistry, 45, 10729-10738.  
16003817 B.Bauer-Siebenlist, S.Dechert, and F.Meyer (2005).
Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure-activity correlations in beta-lactamase model systems.
  Chemistry, 11, 5343-5352.  
16087890 D.Liu, B.W.Lepore, G.A.Petsko, P.W.Thomas, E.M.Stone, W.Fast, and D.Ringe (2005).
Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis.
  Proc Natl Acad Sci U S A, 102, 11882-11887.
PDB code: 2a7m
16227621 G.P.Marasinghe, I.M.Sander, B.Bennett, G.Periyannan, K.W.Yang, C.A.Makaroff, and M.W.Crowder (2005).
Structural studies on a mitochondrial glyoxalase II.
  J Biol Chem, 280, 40668-40675.
PDB code: 1xm8
15895092 J.A.Hermoso, L.Lagartera, A.González, M.Stelter, P.García, M.Martínez-Ripoll, J.L.García, and M.Menéndez (2005).
Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce.
  Nat Struct Mol Biol, 12, 533-538.
PDB code: 2bib
15937993 J.Antony, J.P.Piquemal, and N.Gresh (2005).
Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry.
  J Comput Chem, 26, 1131-1147.  
15699034 O.Schilling, B.Späth, B.Kostelecky, A.Marchfelder, W.Meyer-Klaucke, and A.Vogel (2005).
Exosite modules guide substrate recognition in the ZiPD/ElaC protein family.
  J Biol Chem, 280, 17857-17862.  
16172409 P.E.Tomatis, R.M.Rasia, L.Segovia, and A.J.Vila (2005).
Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
  Proc Natl Acad Sci U S A, 102, 13761-13766.  
15701599 R.Ishii, A.Minagawa, H.Takaku, M.Takagi, M.Nashimoto, and S.Yokoyama (2005).
Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.
  J Biol Chem, 280, 14138-14144.
PDB code: 1ww1
15831827 T.R.Walsh, M.A.Toleman, L.Poirel, and P.Nordmann (2005).
Metallo-beta-lactamases: the quiet before the storm?
  Clin Microbiol Rev, 18, 306-325.  
16209700 T.R.Walsh (2005).
The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria.
  Clin Microbiol Infect, 11, 2-9.  
14744996 C.Poinsignon, D.Moshous, I.Callebaut, Chasseval, I.Villey, and Villartay (2004).
The metallo-beta-lactamase/beta-CASP domain of Artemis constitutes the catalytic core for V(D)J recombination.
  J Exp Med, 199, 315-321.  
15215079 G.Garau, I.García-Sáez, C.Bebrone, C.Anne, P.Mercuri, M.Galleni, J.M.Frère, and O.Dideberg (2004).
Update of the standard numbering scheme for class B beta-lactamases.
  Antimicrob Agents Chemother, 48, 2347-2349.  
15238636 G.Periyannan, P.J.Shaw, T.Sigdel, and M.W.Crowder (2004).
In vivo folding of recombinant metallo-beta-lactamase L1 requires the presence of Zn(II).
  Protein Sci, 13, 2236-2243.  
15561856 J.D.Docquier, T.Lopizzo, S.Liberatori, M.Prenna, M.C.Thaller, J.M.Frère, and G.M.Rossolini (2004).
Biochemical characterization of the THIN-B metallo-beta-lactamase of Janthinobacterium lividum.
  Antimicrob Agents Chemother, 48, 4778-4783.  
14573595 J.D.Garrity, A.L.Carenbauer, L.R.Herron, and M.W.Crowder (2004).
Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis.
  J Biol Chem, 279, 920-927.  
15271998 J.D.Garrity, J.M.Pauff, and M.W.Crowder (2004).
Probing the dynamics of a mobile loop above the active site of L1, a metallo-beta-lactamase from Stenotrophomonas maltophilia, via site-directed mutagenesis and stopped-flow fluorescence spectroscopy.
  J Biol Chem, 279, 39663-39670.  
14747990 M.Dal Peraro, A.J.Vila, and P.Carloni (2004).
Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
  Proteins, 54, 412-423.  
15461559 N.H.Georgopapadakou (2004).
Beta-lactamase inhibitors: evolving compounds for evolving resistance targets.
  Expert Opin Investig Drugs, 13, 1307-1318.  
15159411 P.S.Mercuri, I.García-Sáez, K.De Vriendt, I.Thamm, B.Devreese, J.Van Beeumen, O.Dideberg, G.M.Rossolini, J.M.Frère, and M.Galleni (2004).
Probing the specificity of the subclass B3 FEZ-1 metallo-beta-lactamase by site-directed mutagenesis.
  J Biol Chem, 279, 33630-33638.  
15296518 R.I.Sadreyev, and N.V.Grishin (2004).
Estimates of statistical significance for comparison of individual positions in multiple sequence alignments.
  BMC Bioinformatics, 5, 106.  
15140877 R.M.Rasia, and A.J.Vila (2004).
Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase.
  J Biol Chem, 279, 26046-26051.  
12724330 C.Damblon, M.Jensen, A.Ababou, I.Barsukov, C.Papamicael, C.J.Schofield, L.Olsen, R.Bauer, and G.C.Roberts (2003).
The inhibitor thiomandelic acid binds to both metal ions in metallo-beta-lactamase and induces positive cooperativity in metal binding.
  J Biol Chem, 278, 29240-29251.  
12725860 C.Moali, C.Anne, J.Lamotte-Brasseur, S.Groslambert, B.Devreese, J.Van Beeumen, M.Galleni, and J.M.Frère (2003).
Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis.
  Chem Biol, 10, 319-329.  
12684522 I.García-Saez, J.Hopkins, C.Papamicael, N.Franceschini, G.Amicosante, G.M.Rossolini, M.Galleni, J.M.Frère, and O.Dideberg (2003).
The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril.
  J Biol Chem, 278, 23868-23873.
PDB code: 1m2x
12824483 J.J.Huntley, W.Fast, S.J.Benkovic, P.E.Wright, and H.J.Dyson (2003).
Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-beta-lactamase.
  Protein Sci, 12, 1368-1375.  
12736495 M.Goto, H.Yasuzawa, T.Higashi, Y.Yamaguchi, A.Kawanami, S.Mifune, H.Mori, H.Nakayama, K.Harada, and Y.Arakawa (2003).
Dependence of hydrolysis of beta-lactams with a zinc(II)-beta-lactamase produced from Serratia marcescens (IMP-1) on pH and concentration of zinc(II) ion: dissociation of Zn(II) from IMP-1 in acidic medium.
  Biol Pharm Bull, 26, 589-594.  
14529289 O.Schilling, N.Wenzel, M.Naylor, A.Vogel, M.Crowder, C.Makaroff, and W.Meyer-Klaucke (2003).
Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo.
  Biochemistry, 42, 11777-11786.  
12824499 R.M.Rasia, M.Ceolín, and A.J.Vila (2003).
Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity.
  Protein Sci, 12, 1538-1546.  
12578382 S.Siemann, A.J.Clarke, T.Viswanatha, and G.I.Dmitrienko (2003).
Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases.
  Biochemistry, 42, 1673-1683.  
12543663 T.A.Murphy, A.M.Simm, M.A.Toleman, R.N.Jones, and T.R.Walsh (2003).
Biochemical characterization of the acquired metallo-beta-lactamase SPM-1 from Pseudomonas aeruginosa.
  Antimicrob Agents Chemother, 47, 582-587.  
11876827 A.L.Carenbauer, J.D.Garrity, G.Periyannan, R.B.Yates, and M.W.Crowder (2002).
Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis.
  BMC Biochem, 3, 4.  
11940588 A.M.Simm, C.S.Higgins, A.L.Carenbauer, M.W.Crowder, J.H.Bateson, P.M.Bennett, A.R.Clarke, S.E.Halford, and T.R.Walsh (2002).
Characterization of monomeric L1 metallo-beta -lactamase and the role of the N-terminal extension in negative cooperativity and antibiotic hydrolysis.
  J Biol Chem, 277, 24744-24752.  
12029081 A.Vogel, O.Schilling, M.Niecke, J.Bettmer, and W.Meyer-Klaucke (2002).
ElaC encodes a novel binuclear zinc phosphodiesterase.
  J Biol Chem, 277, 29078-29085.  
  11934488 B.J.Denny, P.A.Lambert, and P.W.West (2002).
The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia.
  FEMS Microbiol Lett, 208, 21-24.  
11847294 C.M.Gomes, C.Frazão, A.V.Xavier, J.Legall, and M.Teixeira (2002).
Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
  Protein Sci, 11, 707-712.  
12022865 D.Suárez, E.N.Brothers, and K.M.Merz (2002).
Insights into the structure and dynamics of the dinuclear zinc beta-lactamase site from Bacteroides fragilis.
  Biochemistry, 41, 6615-6630.  
12395427 D.Suárez, N.Díaz, and K.M.Merz (2002).
Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem.
  J Comput Chem, 23, 1587-1600.  
12177301 I.Callebaut, D.Moshous, J.P.Mornon, and Villartay (2002).
Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family.
  Nucleic Acids Res, 30, 3592-3601.  
12210153 J.Antony, N.Gresh, L.Olsen, L.Hemmingsen, C.J.Schofield, and R.Bauer (2002).
Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
  J Comput Chem, 23, 1281-1296.  
12019096 J.D.Docquier, F.Pantanella, F.Giuliani, M.C.Thaller, G.Amicosante, M.Galleni, J.M.Frère, K.Bush, and G.M.Rossolini (2002).
CAU-1, a subclass B3 metallo-beta-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome.
  Antimicrob Agents Chemother, 46, 1823-1830.  
12011437 J.M.Goldberg, L.Bosgraaf, P.J.Van Haastert, and J.L.Smith (2002).
Identification of four candidate cGMP targets in Dictyostelium.
  Proc Natl Acad Sci U S A, 99, 6749-6754.  
11914347 L.West, D.Yang, and C.Stephens (2002).
Use of the Caulobacter crescentus genome sequence to develop a method for systematic genetic mapping.
  J Bacteriol, 184, 2155-2166.  
12363008 P.S.Mercuri, Y.Ishii, L.Ma, G.M.Rossolini, F.Luzzaro, G.Amicosante, N.Franceschini, J.M.Frere, and M.Galleni (2002).
Clonal diversity and metallo-beta-lactamase production in clinical isolates of Stenotrophomonas maltophilia.
  Microb Drug Resist, 8, 193-200.  
12234848 S.Bellais, D.Girlich, A.Karim, and P.Nordmann (2002).
EBR-1, a novel Ambler subclass B1 beta-lactamase from Empedobacter brevis.
  Antimicrob Agents Chemother, 46, 3223-3227.  
11967267 S.Wommer, S.Rival, U.Heinz, M.Galleni, J.M.Frere, N.Franceschini, G.Amicosante, B.Rasmussen, R.Bauer, and H.W.Adolph (2002).
Substrate-activated zinc binding of metallo-beta -lactamases: physiological importance of mononuclear enzymes.
  J Biol Chem, 277, 24142-24147.  
11484222 F.R.Salsbury, M.F.Crowley, and C.L.Brooks (2001).
Modeling of the metallo-beta-lactamase from B. fragilis: structural and dynamic effects of inhibitor binding.
  Proteins, 44, 448-459.  
11181369 G.M.Rossolini, M.A.Condemi, F.Pantanella, J.D.Docquier, G.Amicosante, and M.C.Thaller (2001).
Metallo-beta-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum.
  Antimicrob Agents Chemother, 45, 837-844.  
11709298 G.W.Rudgers, W.Huang, and T.Palzkill (2001).
Binding properties of a peptide derived from beta-lactamase inhibitory protein.
  Antimicrob Agents Chemother, 45, 3279-3286.  
11714924 I.C.Materon, and T.Palzkill (2001).
Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection.
  Protein Sci, 10, 2556-2565.  
11158734 M.B.Avison, C.S.Higgins, C.J.von Heldreich, P.M.Bennett, and T.R.Walsh (2001).
Plasmid location and molecular heterogeneity of the L1 and L2 beta-lactamase genes of Stenotrophomonas maltophilia.
  Antimicrob Agents Chemother, 45, 413-419.  
11181339 M.Galleni, J.Lamotte-Brasseur, G.M.Rossolini, J.Spencer, O.Dideberg, and J.M.Frère (2001).
Standard numbering scheme for class B beta-lactamases.
  Antimicrob Agents Chemother, 45, 660-663.  
11257043 P.S.Mercuri, F.Bouillenne, L.Boschi, J.Lamotte-Brasseur, G.Amicosante, B.Devreese, J.van Beeumen, J.M.Frère, G.M.Rossolini, and M.Galleni (2001).
Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli.
  Antimicrob Agents Chemother, 45, 1254-1262.  
  11287151 S.Haruta, E.T.Yamamoto, Y.Eriguchi, and T.Sawai (2001).
Characterization of the active-site residues asparagine 167 and lysine 161 of the IMP-1 metallo beta-lactamase.
  FEMS Microbiol Lett, 197, 85-89.  
11327823 W.Fast, Z.Wang, and S.J.Benkovic (2001).
Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-beta-lactamase from Bacteroides fragilis.
  Biochemistry, 40, 1640-1650.  
11591698 Z.Zhang, Y.Yu, J.M.Musser, and T.Palzkill (2001).
Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase.
  J Biol Chem, 276, 46568-46574.  
11063572 J.J.Huntley, S.D.Scrofani, M.J.Osborne, P.E.Wright, and H.J.Dyson (2000).
Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor.
  Biochemistry, 39, 13356-13364.  
11498383 L.B.Rice, and R.A.Bonomo (2000).
beta -Lactamases: which ones are clinically important?
  Drug Resist Updat, 3, 178-189.  
10817705 L.Boschi, P.S.Mercuri, M.L.Riccio, G.Amicosante, M.Galleni, J.M.Frère, and G.M.Rossolini (2000).
The Legionella (Fluoribacter) gormanii metallo-beta-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 beta-lactamases.
  Antimicrob Agents Chemother, 44, 1538-1543.  
  10933508 L.Chantalat, E.Duée, M.Galleni, J.M.Frère, and O.Dideberg (2000).
Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
  Protein Sci, 9, 1402-1406.
PDB code: 1dxk
10722487 L.Poirel, T.Naas, D.Nicolas, L.Collet, S.Bellais, J.D.Cavallo, and P.Nordmann (2000).
Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France.
  Antimicrob Agents Chemother, 44, 891-897.  
10757977 N.O.Concha, C.A.Janson, P.Rowling, S.Pearson, C.A.Cheever, B.P.Clarke, C.Lewis, M.Galleni, J.M.Frère, D.J.Payne, J.H.Bateson, and S.S.Abdel-Meguid (2000).
Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor.
  Biochemistry, 39, 4288-4298.
PDB codes: 1dd6 1ddk
10858348 S.Bellais, D.Aubert, T.Naas, and P.Nordmann (2000).
Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing beta-lactamases in Chryseobacterium meningosepticum.
  Antimicrob Agents Chemother, 44, 1878-1886.  
10508780 A.D.Cameron, M.Ridderström, B.Olin, and B.Mannervik (1999).
Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.
  Structure, 7, 1067-1078.
PDB codes: 1qh3 1qh5
  10518728 G.G.Hammond, J.L.Huber, M.L.Greenlee, J.B.Laub, K.Young, L.L.Silver, J.M.Balkovec, K.D.Pryor, J.K.Wu, B.Leiting, D.L.Pompliano, and J.H.Toney (1999).
Inhibition of IMP-1 metallo-beta-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives.
  FEMS Microbiol Lett, 179, 289-296.  
10498206 M.L.Greenlee, J.B.Laub, J.M.Balkovec, M.L.Hammond, G.G.Hammond, D.L.Pompliano, and J.H.Epstein-Toney (1999).
Synthesis and SAR of thioester and thiol inhibitors of IMP-1 metallo-beta-lactamase.
  Bioorg Med Chem Lett, 9, 2549-2554.  
  10508031 R.Nagano, Y.Adachi, H.Imamura, K.Yamada, T.Hashizume, and H.Morishima (1999).
Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases.
  Antimicrob Agents Chemother, 43, 2497-2503.  
10224083 R.Paul-Soto, R.Bauer, J.M.Frère, M.Galleni, W.Meyer-Klaucke, H.Nolting, G.M.Rossolini, Seny, M.Hernandez-Valladares, M.Zeppezauer, and H.W.Adolph (1999).
Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism.
  J Biol Chem, 274, 13242-13249.  
9931021 S.McManus-Munoz, and M.W.Crowder (1999).
Kinetic mechanism of metallo-beta-lactamase L1 from Stenotrophomonas maltophilia.
  Biochemistry, 38, 1547-1553.  
10508665 Z.Wang, W.Fast, A.M.Valentine, and S.J.Benkovic (1999).
Metallo-beta-lactamase: structure and mechanism.
  Curr Opin Chem Biol, 3, 614-622.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.