spacer
spacer

PDBsum entry 1sig

Go to PDB code: 
protein links
Transcription regulation PDB id
1sig

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
305 a.a. *
Waters ×333
* Residue conservation analysis
PDB id:
1sig
Name: Transcription regulation
Title: Crystal structure of a sigma70 subunit fragment from escherichia coli RNA polymerase
Structure: RNA polymerase primary sigma factor. Chain: a. Fragment: residues 114 - 448. Synonym: sigma70. Engineered: yes
Source: Escherichia coli. Organism_taxid: 83333. Strain: k12. Cell_line: bl21. Cellular_location: cytoplasm. Gene: rpod. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.60Å     R-factor:   0.218     R-free:   0.315
Authors: A.Malhotra,E.Severinova,S.A.Darst
Key ref:
A.Malhotra et al. (1996). Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell, 87, 127-136. PubMed id: 8858155 DOI: 10.1016/S0092-8674(00)81329-X
Date:
18-Feb-97     Release date:   15-May-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00579  (RPOD_ECOLI) -  RNA polymerase sigma factor RpoD from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
613 a.a.
305 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0092-8674(00)81329-X Cell 87:127-136 (1996)
PubMed id: 8858155  
 
 
Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase.
A.Malhotra, E.Severinova, S.A.Darst.
 
  ABSTRACT  
 
The 2.6 A crystal structure of a fragment of the sigma 70 promoter specificity subunit of E. coli RNA polymerase is described. Residues involved in core RNA polymerase binding lie on one face of the structure. On the opposite face, aligned along one helix, are exposed residues that interact with the -10 consensus promoter element (the Pribnow box), including four aromatic residues involved in promoter melting. The structure suggests one way in which DNA interactions may be inhibited in the absence of RNA polymerase and provides a framework for the interpretation of a large number of genetic and biochemical analyses.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. DNA Interaction Surface of σ^70[2](A) Stereo RIBBONS ([10]) diagram of the cluster of four helices comprising the conserved regions. The view is 180° about a vertical axis from the view of Figure 3. Helix 14, containing part of conserved region 2.3 and conserved region 2.4, runs nearly horizontally across the middle of the picture. Shown in yellow are residues that comprise the conserved hydrophobic core (Ile-119, Ile-123, Ala-375, Met-379, Val-380, Val-387, Ala-391, Leu-399, Leu-404, Leu-412, Ala-415, Val-416, Phe-419, Phe-427, Ala-431, Ile-435, Ile-439, Ile-443). Other residues are shown in color as follows: cyan, exposed conserved aromatic residues from region 2.3, important for promoter melting; orange, residues known to interact with the −12 position of the −10 consensus element; blue, conserved basic residues flanking the promoter recognition and promoter melting residues that may be involved in DNA phosphate backbone interactions.(B) Likely orientation of helix 14/nontemplate DNA strand interactions. The backbone of helix 14 is shown as a coil with the solvent-exposed face of the helix facing down. The α-carbon positions of residues important for promoter recognition or melting are indicated. Schematically illustrated below is the nontemplate strand sequence of the −10 consensus element. Interactions between specific residues and bases determined from genetic or biochemical studies are indicated by dashed lines. The interaction indicated between the residue at position 441 and the −13 position is not specific in the case of σ^70 (the −13 position is not conserved in the −10 element recognized by σ^70) but is indicated from genetic studies on alternative σ factors that recognize −10 elements with a conserved −13 position ([15]).
Figure 5.
Figure 5. Potential Autoinhibition of DNA BindingRIBBONS ([10]) diagram showing a view of the conserved region helices, vert, similar 90° about a vertical axis from the view of Figure 4. Helix 14 is viewed from the C-terminal end nearly down its axis. Selected conserved residues are color coded as follows: yellow, residues comprising conserved hydrophobic core; green, residues in region important for core RNAP binding; cyan, aromatic residues important for promoter melting; orange, residues important for recognition of the −12 position of the −10 consensus element. The location of core binding and DNA binding determinants on opposite sides of the structure is noted. Illustrated schematically are the sequence (in single-letter amino acid code) and charge of the 20-residue, disordered acidic loop (residues 192–211).
 
  The above figures are reprinted by permission from Cell Press: Cell (1996, 87, 127-136) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21029433 D.M.Hinton (2010).
Transcriptional control in the prereplicative phase of T4 development.
  Virol J, 7, 289.  
20070531 P.G.Devi, E.A.Campbell, S.A.Darst, and B.E.Nickels (2010).
Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation.
  Mol Microbiol, 75, 607-622.  
19833764 A.Feklistov, and S.A.Darst (2009).
Promoter recognition by bacterial alternative sigma factors: the price of high selectivity?
  Genes Dev, 23, 2371-2375.  
19366670 A.H.Yuan, B.E.Nickels, and A.Hochschild (2009).
The bacteriophage T4 AsiA protein contacts the beta-flap domain of RNA polymerase.
  Proc Natl Acad Sci U S A, 106, 6597-6602.  
19903881 B.P.Hudson, J.Quispe, S.Lara-González, Y.Kim, H.M.Berman, E.Arnold, R.H.Ebright, and C.L.Lawson (2009).
Three-dimensional EM structure of an intact activator-dependent transcription initiation complex.
  Proc Natl Acad Sci U S A, 106, 19830-19835.
PDB code: 3iyd
19139410 I.G.Hook-Barnard, and D.M.Hinton (2009).
The promoter spacer influences transcription initiation via sigma70 region 1.1 of Escherichia coli RNA polymerase.
  Proc Natl Acad Sci U S A, 106, 737-742.  
19025566 M.Obrist, S.Langklotz, S.Milek, F.Führer, and F.Narberhaus (2009).
Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
  FEMS Microbiol Lett, 290, 199-208.  
19111618 N.R.Gassman, S.O.Ho, Y.Korlann, J.Chiang, Y.Wu, L.J.Perry, Y.Kim, and S.Weiss (2009).
In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1.
  Protein Expr Purif, 65, 66-76.  
19354299 S.M.Cheal, M.Ng, B.Barrios, Z.Miao, A.K.Kalani, and C.F.Meares (2009).
Mapping protein-protein interactions by localized oxidation: consequences of the reach of hydroxyl radical.
  Biochemistry, 48, 4577-4586.  
18826409 A.H.Yuan, B.D.Gregory, J.S.Sharp, K.D.McCleary, S.L.Dove, and A.Hochschild (2008).
Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor.
  Mol Microbiol, 70, 1136-1151.  
17673165 B.E.Brooks, and S.K.Buchanan (2008).
Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors.
  Biochim Biophys Acta, 1778, 1930-1945.  
18940669 E.C.Schwartz, A.Shekhtman, K.Dutta, M.R.Pratt, D.Cowburn, S.Darst, and T.W.Muir (2008).
A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding.
  Chem Biol, 15, 1091-1103.
PDB code: 2k6x
17616611 A.L.Cohen, J.D.Oliver, A.DePaola, E.J.Feil, and E.F.Boyd (2007).
Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island.
  Appl Environ Microbiol, 73, 5553-5565.  
17535803 A.Sevostyanova, A.Feklistov, N.Barinova, E.Heyduk, I.Bass, S.Klimasauskas, T.Heyduk, and A.Kulbachinskiy (2007).
Specific recognition of the -10 promoter element by the free RNA polymerase sigma subunit.
  J Biol Chem, 282, 22033-22039.  
17567604 L.A.Schroeder, A.J.Choi, and P.L.DeHaseth (2007).
The -11A of promoter DNA and two conserved amino acids in the melting region of sigma70 both directly affect the rate limiting step in formation of the stable RNA polymerase-promoter complex, but they do not necessarily interact.
  Nucleic Acids Res, 35, 4141-4153.  
17332752 M.Leibman, and A.Hochschild (2007).
A sigma-core interaction of the RNA polymerase holoenzyme that enhances promoter escape.
  EMBO J, 26, 1579-1590.  
17268549 N.Zenkin, A.Kulbachinskiy, Y.Yuzenkova, A.Mustaev, I.Bass, K.Severinov, and K.Brodolin (2007).
Region 1.2 of the RNA polymerase sigma subunit controls recognition of the -10 promoter element.
  EMBO J, 26, 955-964.  
17572682 Y.Wei, S.Liu, J.Lausen, C.Woodrell, S.Cho, N.Biris, N.Kobayashi, Y.Wei, S.Yokoyama, and M.H.Werner (2007).
A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription.
  Nat Struct Mol Biol, 14, 653-661.
PDB code: 2pp4
16484205 M.J.Wilson, and I.L.Lamont (2006).
Mutational analysis of an extracytoplasmic-function sigma factor to investigate its interactions with RNA polymerase and DNA.
  J Bacteriol, 188, 1935-1942.  
17075066 M.K.Sorenson, and S.A.Darst (2006).
Disulfide cross-linking indicates that FlgM-bound and free sigma28 adopt similar conformations.
  Proc Natl Acad Sci U S A, 103, 16722-16727.  
15853878 D.Vingadassalom, A.Kolb, C.Mayer, T.Rybkine, E.Collatz, and I.Podglajen (2005).
An unusual primary sigma factor in the Bacteroidetes phylum.
  Mol Microbiol, 56, 888-902.  
15659674 H.Prince, R.Zhou, and L.Kroos (2005).
Substrate requirements for regulated intramembrane proteolysis of Bacillus subtilis pro-sigmaK.
  J Bacteriol, 187, 961-971.  
  16511156 K.G.Thakur, and B.Gopal (2005).
Crystallization and preliminary X-ray diffraction studies of two domains of a bilobed extra-cytoplasmic function sigma factor SigC from Mycobacterium tuberculosis.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 779-781.  
15731103 L.A.Schroeder, and P.L.deHaseth (2005).
Mechanistic differences in promoter DNA melting by Thermus aquaticus and Escherichia coli RNA polymerases.
  J Biol Chem, 280, 17422-17429.  
16210314 M.Doucleff, L.T.Malak, J.G.Pelton, and D.E.Wemmer (2005).
The C-terminal RpoN domain of sigma54 forms an unpredicted helix-turn-helix motif similar to domains of sigma70.
  J Biol Chem, 280, 41530-41536.
PDB code: 2ahq
15901705 M.Obrist, and F.Narberhaus (2005).
Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach.
  J Bacteriol, 187, 3807-3813.  
16166539 O.V.Kourennaia, L.Tsujikawa, and P.L.Dehaseth (2005).
Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.
  J Bacteriol, 187, 6762-6769.  
16285916 R.A.Mooney, S.A.Darst, and R.Landick (2005).
Sigma and RNA polymerase: an on-again, off-again relationship?
  Mol Cell, 20, 335-345.  
15943816 T.Łoziński, and K.L.Wierzchowski (2005).
Mg2+-modulated KMnO4 reactivity of thymines in the open transcription complex reflects variation in the negative electrostatic potential along the separated DNA strands. Footprinting of Escherichia coli RNA polymerase complex at the lambdaP(R) promoter revisited.
  FEBS J, 272, 2838-2853.  
15650048 Y.Berghöfer-Hochheimer, C.Z.Lu, and C.A.Gross (2005).
Altering the interaction between sigma70 and RNA polymerase generates complexes with distinct transcription-elongation properties.
  Proc Natl Acad Sci U S A, 102, 1157-1162.  
14704342 C.Checroun, P.Bordes, O.Leroy, A.Kolb, and C.Gutierrez (2004).
Interactions between the 2.4 and 4.2 regions of sigmaS, the stress-specific sigma factor of Escherichia coli, and the -10 and -35 promoter elements.
  Nucleic Acids Res, 32, 45-53.  
14990576 H.J.Lee, H.M.Lim, and S.Adhya (2004).
An unsubstituted C2 hydrogen of adenine is critical and sufficient at the -11 position of a promoter to signal base pair deformation.
  J Biol Chem, 279, 16899-16902.  
15241657 H.Kawano, K.Nakasone, M.Matsumoto, Y.Yoshida, R.Usami, C.Kato, and F.Abe (2004).
Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli.
  Extremophiles, 8, 367-375.  
15276828 J.R.Anthony, J.D.Newman, and T.J.Donohue (2004).
Interactions between the Rhodobacter sphaeroides ECF sigma factor, sigma(E), and its anti-sigma factor, ChrR.
  J Mol Biol, 341, 345-360.  
15516558 M.Horikoshi, T.Yura, S.Tsuchimoto, Y.Fukumori, and M.Kanemori (2004).
Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity.
  J Bacteriol, 186, 7474-7480.  
15306028 M.J.Osborne, N.Siddiqui, P.Iannuzzi, and K.Gehring (2004).
The solution structure of ChaB, a putative membrane ion antiporter regulator from Escherichia coli.
  BMC Struct Biol, 4, 9.
PDB code: 1sg7
15228523 M.T.Nasim, I.C.Eperon, B.M.Wilkins, and W.J.Brammar (2004).
The activity of a single-stranded promoter of plasmid ColIb-P9 depends on its secondary structure.
  Mol Microbiol, 53, 405-417.  
15063853 S.E.Ades (2004).
Control of the alternative sigma factor sigmaE in Escherichia coli.
  Curr Opin Microbiol, 7, 157-162.  
12631287 A.Homann, and G.Link (2003).
DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression.
  Eur J Biochem, 270, 1288-1300.  
13679366 A.Meinhart, J.Blobel, and P.Cramer (2003).
An extended winged helix domain in general transcription factor E/IIE alpha.
  J Biol Chem, 278, 48267-48274.
PDB code: 1q1h
14621988 D.H.Shin, H.H.Nguyen, J.Jancarik, H.Yokota, R.Kim, and S.H.Kim (2003).
Crystal structure of NusA from Thermotoga maritima and functional implication of the N-terminal domain.
  Biochemistry, 42, 13429-13437.
PDB code: 1l2f
12700252 F.Narberhaus, and S.Balsiger (2003).
Structure-function studies of Escherichia coli RpoH (sigma32) by in vitro linker insertion mutagenesis.
  J Bacteriol, 185, 2731-2738.  
12670993 J.Gowrishankar, K.Yamamoto, P.R.Subbarayan, and A.Ishihama (2003).
In vitro properties of RpoS (sigma(S)) mutants of Escherichia coli with postulated N-terminal subregion 1.1 or C-terminal region 4 deleted.
  J Bacteriol, 185, 2673-2679.  
12496274 K.Wong, G.A.Kassavetis, J.P.Leonetti, and E.P.Geiduschek (2003).
Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55.
  J Biol Chem, 278, 7073-7080.  
12540296 M.S.Paget, and J.D.Helmann (2003).
The sigma70 family of sigma factors.
  Genome Biol, 4, 203.  
12914698 N.Opalka, M.Chlenov, P.Chacon, W.J.Rice, W.Wriggers, and S.A.Darst (2003).
Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase.
  Cell, 114, 335-345.  
14527287 T.M.Gruber, and C.A.Gross (2003).
Multiple sigma subunits and the partitioning of bacterial transcription space.
  Annu Rev Microbiol, 57, 441-466.  
12086598 B.A.Young, T.M.Gruber, and C.A.Gross (2002).
Views of transcription initiation.
  Cell, 109, 417-420.  
12000971 D.G.Vassylyev, S.Sekine, O.Laptenko, J.Lee, M.N.Vassylyeva, S.Borukhov, and S.Yokoyama (2002).
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.
  Nature, 417, 712-719.
PDB code: 1iw7
11931761 E.A.Campbell, O.Muzzin, M.Chlenov, J.L.Sun, C.A.Olson, O.Weinman, M.L.Trester-Zedlitz, and S.A.Darst (2002).
Structure of the bacterial RNA polymerase promoter specificity sigma subunit.
  Mol Cell, 9, 527-539.
PDB codes: 1ku2 1ku3 1ku7
11955433 E.A.Campbell, S.Masuda, J.L.Sun, O.Muzzin, C.A.Olson, S.Wang, and S.A.Darst (2002).
Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF.
  Cell, 108, 795-807.
PDB code: 1l0o
11918668 F.Colland, N.Fujita, A.Ishihama, and A.Kolb (2002).
The interaction between sigmaS, the stationary phase sigma factor, and the core enzyme of Escherichia coli RNA polymerase.
  Genes Cells, 7, 233-247.  
11976292 L.C.Anthony, A.A.Dombkowski, and R.R.Burgess (2002).
Using disulfide bond engineering to study conformational changes in the beta'260-309 coiled-coil region of Escherichia coli RNA polymerase during sigma(70) binding.
  J Bacteriol, 184, 2634-2641.  
12359719 L.C.Anthony, and R.R.Burgess (2002).
Conformational flexibility in sigma70 region 2 during transcription initiation.
  J Biol Chem, 277, 46433-46441.  
12198314 M.N.Vassylyeva, J.Lee, S.I.Sekine, O.Laptenko, S.Kuramitsu, T.Shibata, Y.Inoue, S.Borukhov, D.G.Vassylyev, and S.Yokoyama (2002).
Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus.
  Acta Crystallogr D Biol Crystallogr, 58, 1497-1500.  
11807081 N.E.Baldwin, A.McCracken, and A.J.Dombroski (2002).
Two "wild-type" variants of Escherichia coli sigma(70): context-dependent effects of the identity of amino acid 149.
  J Bacteriol, 184, 1192-1195.  
11827949 N.Rajewsky, N.D.Socci, M.Zapotocky, and E.D.Siggia (2002).
The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons.
  Genome Res, 12, 298-308.  
11988471 P.R.Selvin (2002).
Principles and biophysical applications of lanthanide-based probes.
  Annu Rev Biophys Biomol Struct, 31, 275-302.  
12208995 R.Hengge-Aronis (2002).
Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase.
  Microbiol Mol Biol Rev, 66, 373.  
12351645 S.J.Lee, and J.D.Gralla (2002).
Promoter use by sigma 38 (rpoS) RNA polymerase. Amino acid clusters for DNA binding and isomerization.
  J Biol Chem, 277, 47420-47427.  
11114913 A.Stiefel, S.Mahren, M.Ochs, P.T.Schindler, S.Enz, and V.Braun (2001).
Control of the ferric citrate transport system of Escherichia coli: mutations in region 2.1 of the FecI extracytoplasmic-function sigma factor suppress mutations in the FecR transmembrane regulatory protein.
  J Bacteriol, 183, 162-170.  
11439189 B.A.Young, L.C.Anthony, T.M.Gruber, T.M.Arthur, E.Heyduk, C.Z.Lu, M.M.Sharp, T.Heyduk, R.R.Burgess, and C.A.Gross (2001).
A coiled-coil from the RNA polymerase beta' subunit allosterically induces selective nontemplate strand binding by sigma(70).
  Cell, 105, 935-944.  
11567089 F.D.Schubot, C.J.Chen, J.P.Rose, T.A.Dailey, H.A.Dailey, and B.C.Wang (2001).
Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription.
  Protein Sci, 10, 1980-1988.
PDB code: 1i4w
11251833 G.Becker, and R.Hengge-Aronis (2001).
What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S).
  Mol Microbiol, 39, 1153-1165.  
11222589 J.Qiu, and J.D.Helmann (2001).
The -10 region is a key promoter specificity determinant for the Bacillus subtilis extracytoplasmic-function sigma factors sigma(X) and sigma(W).
  J Bacteriol, 183, 1921-1927.  
11292807 J.Xu, B.C.McCabe, and G.B.Koudelka (2001).
Function-based selection and characterization of base-pair polymorphisms in a promoter of Escherichia coli RNA polymerase-sigma(70).
  J Bacteriol, 183, 2866-2873.  
11703665 N.E.Baldwin, and A.J.Dombroski (2001).
Isolation and characterization of mutations in region 1.2 of Escherichia coli sigma70.
  Mol Microbiol, 42, 427-437.  
11282466 R.R.Burgess, and L.Anthony (2001).
How sigma docks to RNA polymerase and what sigma does.
  Curr Opin Microbiol, 4, 126-131.  
11340052 S.L.Cohen, and B.T.Chait (2001).
Mass spectrometry as a tool for protein crystallography.
  Annu Rev Biophys Biomol Struct, 30, 67-85.  
11737638 T.Gaal, W.Ross, S.T.Estrem, L.H.Nguyen, R.R.Burgess, and R.L.Gourse (2001).
Promoter recognition and discrimination by EsigmaS RNA polymerase.
  Mol Microbiol, 42, 939-954.  
11987181 T.Heyduk, and A.Niedziela-Majka (2001).
Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes.
  Biopolymers, 61, 201-213.  
11511357 T.M.Gruber, D.Markov, M.M.Sharp, B.A.Young, C.Z.Lu, H.J.Zhong, I.Artsimovitch, K.M.Geszvain, T.M.Arthur, R.R.Burgess, R.Landick, K.Severinov, and C.A.Gross (2001).
Binding of the initiation factor sigma(70) to core RNA polymerase is a multistep process.
  Mol Cell, 8, 21-31.  
10972819 B.Aigle, A.Wietzorrek, E.Takano, and M.J.Bibb (2000).
A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production.
  Mol Microbiol, 37, 995.  
10660585 D.I.Svergun, M.Malfois, M.H.Koch, S.R.Wigneshweraraj, and M.Buck (2000).
Low resolution structure of the sigma54 transcription factor revealed by X-ray solution scattering.
  J Biol Chem, 275, 4210-4214.  
  11004406 D.J.Studholme, and M.Buck (2000).
The alternative sigma factor sigma(28) of the extreme thermophile Aquifex aeolicus restores motility to an Escherichia coli fliA mutant.
  FEMS Microbiol Lett, 191, 103-107.  
10871407 E.Southern, and M.Merrick (2000).
The role of region II in the RNA polymerase sigma factor sigma(N) (sigma(54)).
  Nucleic Acids Res, 28, 2563-2570.  
11104815 G.S.Chilcott, and K.T.Hughes (2000).
Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli.
  Microbiol Mol Biol Rev, 64, 694-708.  
11029421 I.Artsimovitch, V.Svetlov, L.Anthony, R.R.Burgess, and R.Landick (2000).
RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro.
  J Bacteriol, 182, 6027-6035.  
10652363 K.Brodolin, A.Mustaev, K.Severinov, and V.Nikiforov (2000).
Identification of RNA polymerase beta' subunit segment contacting the melted region of the lacUV5 promoter.
  J Biol Chem, 275, 3661-3666.  
10744988 K.Severinov (2000).
RNA polymerase structure-function: insights into points of transcriptional regulation.
  Curr Opin Microbiol, 3, 118-125.  
10946105 L.A.Allison (2000).
The role of sigma factors in plastid transcription.
  Biochimie, 82, 537-548.  
10692351 L.Leoni, N.Orsi, V.de Lorenzo, and P.Visca (2000).
Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa.
  J Bacteriol, 182, 1481-1491.  
10734058 M.A.Hakimi, I.Privat, J.G.Valay, and S.Lerbs-Mache (2000).
Evolutionary conservation of C-terminal domains of primary sigma(70)-type transcription factors between plants and bacteria.
  J Biol Chem, 275, 9215-9221.  
10698953 M.S.Fenton, S.J.Lee, and J.D.Gralla (2000).
Escherichia coli promoter opening and -10 recognition: mutational analysis of sigma70.
  EMBO J, 19, 1130-1137.  
10958696 P.F.Cliften, S.H.Jang, and J.A.Jaehning (2000).
Identifying a core RNA polymerase surface critical for interactions with a sigma-like specificity factor.
  Mol Cell Biol, 20, 7013-7023.  
11118218 R.D.Finn, E.V.Orlova, B.Gowen, M.Buck, and M.van Heel (2000).
Escherichia coli RNA polymerase core and holoenzyme structures.
  EMBO J, 19, 6833-6844.  
10973050 S.A.Datwyler, and C.F.Meares (2000).
Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase.
  Trends Biochem Sci, 25, 408-414.  
11040219 T.F.Mah, K.Kuznedelov, A.Mushegian, K.Severinov, and J.Greenblatt (2000).
The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA.
  Genes Dev, 14, 2664-2675.  
10723029 U.Fiedler, and H.T.Marc Timmers (2000).
Peeling by binding or twisting by cranking: models for promoter opening and transcription initiation by RNA polymerase II.
  Bioessays, 22, 316-326.  
9920872 E.Heyduk, and T.Heyduk (1999).
Architecture of a complex between the sigma70 subunit of Escherichia coli RNA polymerase and the nontemplate strand oligonucleotide. Luminescence resonance energy transfer study.
  J Biol Chem, 274, 3315-3322.  
  10348869 F.Arsène, T.Tomoyasu, A.Mogk, C.Schirra, A.Schulze-Specking, and B.Bukau (1999).
Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.
  J Bacteriol, 181, 3552-3561.  
10406809 F.Colland, N.Fujita, D.Kotlarz, J.A.Bown, C.F.Meares, A.Ishihama, and A.Kolb (1999).
Positioning of sigma(S), the stationary phase sigma factor, in Escherichia coli RNA polymerase-promoter open complexes.
  EMBO J, 18, 4049-4059.  
10339606 G.Becker, E.Klauck, and R.Hengge-Aronis (1999).
Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS.
  Proc Natl Acad Sci U S A, 96, 6439-6444.  
9890989 J.A.Bown, J.T.Owens, C.F.Meares, N.Fujita, A.Ishihama, S.J.Busby, and S.D.Minchin (1999).
Organization of open complexes at Escherichia coli promoters. Location of promoter DNA sites close to region 2.5 of the sigma70 subunit of RNA polymerase.
  J Biol Chem, 274, 2263-2270.  
10320321 J.D.Helmann, and P.L.deHaseth (1999).
Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners.
  Biochemistry, 38, 5959-5967.  
10580008 M.M.Sharp, C.L.Chan, C.Z.Lu, M.T.Marr, S.Nechaev, E.W.Merritt, K.Severinov, J.W.Roberts, and C.A.Gross (1999).
The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized.
  Genes Dev, 13, 3015-3026.  
10548737 M.Shirai, R.Fujinaga, J.K.Akada, and T.Nakazawa (1999).
Activation of Helicobacter pylori ureA promoter by a hybrid Escherichia coli-H. pylori rpoD gene in E. coli.
  Gene, 239, 351-359.  
10078205 S.Callaci, E.Heyduk, and T.Heyduk (1999).
Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit.
  Mol Cell, 3, 229-238.  
10625443 S.L.Traviglia, S.A.Datwyler, D.Yan, A.Ishihama, and C.F.Meares (1999).
Targeted protein footprinting: where different transcription factors bind to RNA polymerase.
  Biochemistry, 38, 15774-15778.  
  10567537 T.M.Ikeda, and M.W.Gray (1999).
Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria.
  Mol Cell Biol, 19, 8113-8122.  
9506513 A.Hochschild, and S.L.Dove (1998).
Protein-protein contacts that activate and repress prokaryotic transcription.
  Cell, 92, 597-600.  
10447379 A.P.Pugsley, and T.J.Silhavy (1998).
Cell regulation: continually redefining the rules.
  Curr Opin Microbiol, 1, 141-144.  
10384278 C.A.Gross, C.Chan, A.Dombroski, T.Gruber, M.Sharp, J.Tupy, and B.Young (1998).
The functional and regulatory roles of sigma factors in transcription.
  Cold Spring Harb Symp Quant Biol, 63, 141-155.  
9707415 C.Davies, R.B.Gerstner, D.E.Draper, V.Ramakrishnan, and S.W.White (1998).
The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif.
  EMBO J, 17, 4545-4558.  
9786190 D.Beier, G.Spohn, R.Rappuoli, and V.Scarlato (1998).
Functional analysis of the Helicobacter pylori principal sigma subunit of RNA polymerase reveals that the spacer region is important for efficient transcription.
  Mol Microbiol, 30, 121-134.  
  9784501 D.C.Ko, M.T.Marr, J.Guo, and J.W.Roberts (1998).
A surface of Escherichia coli sigma 70 required for promoter function and antitermination by phage lambda Q protein.
  Genes Dev, 12, 3276-3285.  
  9495746 D.M.Joo, A.Nolte, R.Calendar, Y.N.Zhou, and D.J.Jin (1998).
Multiple regions on the Escherichia coli heat shock transcription factor sigma32 determine core RNA polymerase binding specificity.
  J Bacteriol, 180, 1095-1102.  
9515707 F.Colland, G.Orsini, E.N.Brody, H.Buc, and A.Kolb (1998).
The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters.
  Mol Microbiol, 27, 819-829.  
9521700 G.N.Godson, A.A.Mustaev, and W.Sun (1998).
ATP cross-linked to Escherichia coli single-strand DNA-binding protein can be utilized by the catalytic center of primase as initiating nucleotide for primer RNA synthesis on phage G4oric template.
  Biochemistry, 37, 3810-3817.  
9482743 J.P.Léonetti, K.Wong, and E.P.Geiduschek (1998).
Core-sigma interaction: probing the interaction of the bacteriophage T4 gene 55 promoter recognition protein with E.coli RNA polymerase core.
  EMBO J, 17, 1467-1475.  
9601026 J.T.Owens, A.J.Chmura, K.Murakami, N.Fujita, A.Ishihama, and C.F.Meares (1998).
Mapping the promoter DNA sites proximal to conserved regions of sigma 70 in an Escherichia coli RNA polymerase-lacUV5 open promoter complex.
  Biochemistry, 37, 7670-7675.  
9600910 J.T.Owens, R.Miyake, K.Murakami, A.J.Chmura, N.Fujita, A.Ishihama, and C.F.Meares (1998).
Mapping the sigma70 subunit contact sites on Escherichia coli RNA polymerase with a sigma70-conjugated chemical protease.
  Proc Natl Acad Sci U S A, 95, 6021-6026.  
10384296 J.W.Roberts, W.Yarnell, E.Bartlett, J.Guo, M.Marr, D.C.Ko, H.Sun, and C.W.Roberts (1998).
Antitermination by bacteriophage lambda Q protein.
  Cold Spring Harb Symp Quant Biol, 63, 319-325.  
9891799 K.T.Hughes, and K.Mathee (1998).
The anti-sigma factors.
  Annu Rev Microbiol, 52, 231-286.  
9707416 M.A.Markus, R.B.Gerstner, D.E.Draper, and D.A.Torchia (1998).
The solution structure of ribosomal protein S4 delta41 reveals two subdomains and a positively charged surface that may interact with RNA.
  EMBO J, 17, 4559-4571.  
9592164 M.Kestermann, S.Neukirchen, K.Kloppstech, and G.Link (1998).
Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba).
  Nucleic Acids Res, 26, 2747-2753.  
10384266 R.H.Ebright (1998).
RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes.
  Cold Spring Harb Symp Quant Biol, 63, 11-20.  
10384291 S.A.Darst, A.Polyakov, C.Richter, and G.Zhang (1998).
Structural studies of Escherichia coli RNA polymerase.
  Cold Spring Harb Symp Quant Biol, 63, 269-276.  
9830052 S.Callaci, E.Heyduk, and T.Heyduk (1998).
Conformational changes of Escherichia coli RNA polymerase sigma70 factor induced by binding to the core enzyme.
  J Biol Chem, 273, 32995-33001.  
9521651 S.Callaci, and T.Heyduk (1998).
Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme.
  Biochemistry, 37, 3312-3320.  
9461075 S.Krapp, G.Kelly, J.Reischl, R.O.Weinzierl, and S.Matthews (1998).
Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.
  Nat Struct Biol, 5, 110-114.
PDB code: 1a1d
9813048 T.M.Arthur, and R.R.Burgess (1998).
Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit.
  J Biol Chem, 273, 31381-31387.  
  9637689 W.C.Bowman, and R.G.Kranz (1998).
A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase.
  Genes Dev, 12, 1884-1893.  
9751721 Y.Guo, and J.D.Gralla (1998).
Promoter opening via a DNA fork junction binding activity.
  Proc Natl Acad Sci U S A, 95, 11655-11660.  
9421493 Y.Tozawa, K.Tanaka, H.Takahashi, and K.Wakasa (1998).
Nuclear encoding of a plastid sigma factor in rice and its tissue- and light-dependent expression.
  Nucleic Acids Res, 26, 415-419.  
9256411 A.Hoffmann, T.Oelgeschläger, and R.G.Roeder (1997).
Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions?
  Proc Natl Acad Sci U S A, 94, 8928-8935.  
9144163 D.M.Joo, N.Ng, and R.Calendar (1997).
A sigma32 mutant with a single amino acid change in the highly conserved region 2.2 exhibits reduced core RNA polymerase affinity.
  Proc Natl Acad Sci U S A, 94, 4907-4912.  
9275158 J.T.Wang, A.Syed, and J.D.Gralla (1997).
Multiple pathways to bypass the enhancer requirement of sigma 54 RNA polymerase: roles for DNA and protein determinants.
  Proc Natl Acad Sci U S A, 94, 9538-9543.  
9233812 K.A.Barne, J.A.Bown, S.J.Busby, and S.D.Minchin (1997).
Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10' motif at promoters.
  EMBO J, 16, 4034-4040.  
9144176 K.Fredrick, and J.D.Helmann (1997).
RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates.
  Proc Natl Acad Sci U S A, 94, 4982-4987.  
  9023229 M.J.Breyer, N.E.Thompson, and R.R.Burgess (1997).
Identification of the epitope for a highly cross-reactive monoclonal antibody on the major sigma factor of bacterial RNA polymerase.
  J Bacteriol, 179, 1404-1408.  
9157885 M.T.Marr, and J.W.Roberts (1997).
Promoter recognition as measured by binding of polymerase to nontemplate strand oligonucleotide.
  Science, 276, 1258-1260.  
  9353258 P.F.Cliften, J.Y.Park, B.P.Davis, S.H.Jang, and J.A.Jaehning (1997).
Identification of three regions essential for interaction between a sigma-like factor and core RNA polymerase.
  Genes Dev, 11, 2897-2909.  
  9045836 T.M.Gruber, and D.A.Bryant (1997).
Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2.
  J Bacteriol, 179, 1734-1747.  
9144180 W.V.Cannon, M.K.Chaney, X.Wang, and M.Buck (1997).
Two domains within sigmaN (sigma54) cooperate for DNA binding.
  Proc Natl Acad Sci U S A, 94, 5006-5011.  
9185571 X.Huang, F.J.Lopez de Saro, and J.D.Helmann (1997).
sigma factor mutations affecting the sequence-selective interaction of RNA polymerase with -10 region single-stranded DNA.
  Nucleic Acids Res, 25, 2603-2609.  
  9023207 Y.Guo, and J.D.Gralla (1997).
DNA-binding determinants of sigma 54 as deduced from libraries of mutations.
  J Bacteriol, 179, 1239-1245.  
8939761 C.L.Chan, M.A.Lonetto, and C.A.Gross (1996).
Sigma domain structure: one down, one to go.
  Structure, 4, 1235-1238.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer