spacer
spacer

PDBsum entry 1s0j

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1s0j
Jmol
Contents
Protein chain
623 a.a. *
Ligands
MUS
Waters ×575
* Residue conservation analysis
PDB id:
1s0j
Name: Hydrolase
Title: Trypanosoma cruzi trans-sialidase in complex with munana (michaelis complex)
Structure: Trans-sialidase. Chain: a. Engineered: yes. Mutation: yes
Source: Trypanosoma cruzi. Organism_taxid: 5693. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.65Å     R-factor:   0.163     R-free:   0.194
Authors: M.F.Amaya,A.G.Watts,I.Damager,A.Wehenkel,T.Nguyen, A.Buschiazzo,G.Paris,A.C.Frasch,S.G.Withers,P.M.Alzari
Key ref:
M.F.Amaya et al. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure, 12, 775-784. PubMed id: 15130470 DOI: 10.1016/j.str.2004.02.036
Date:
31-Dec-03     Release date:   18-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q26966  (Q26966_TRYCR) -  Trans-sialidase
Seq:
Struc:
 
Seq:
Struc:
642 a.a.
623 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 12 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     metabolic process   2 terms 
  Biochemical function     exo-alpha-sialidase activity     1 term  

 

 
DOI no: 10.1016/j.str.2004.02.036 Structure 12:775-784 (2004)
PubMed id: 15130470  
 
 
Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase.
M.F.Amaya, A.G.Watts, I.Damager, A.Wehenkel, T.Nguyen, A.Buschiazzo, G.Paris, A.C.Frasch, S.G.Withers, P.M.Alzari.
 
  ABSTRACT  
 
Sialidases are a superfamily of sialic-acid-releasing enzymes that are of significant interest due to their implication as virulence factors in the pathogenesis of a number of diseases. However, extensive studies of viral and microbial sialidases have failed to provide a comprehensive picture of their mechanistic properties, in part because the structures of competent enzyme-substrate complexes and reaction intermediates have never been described. Here we report these structures for the Trypanosoma cruzi trans-sialidase (TcTS), showing that catalysis by sialidases occurs via a similar mechanism to that of other retaining glycosidases, but with some intriguing differences that may have evolved in response to the substrate structure.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Structure of the Covalent Sialyl-Enzyme Intermediate(A) Chemical structure of 2,3-difluoro-sialic acid used for trapping the reaction intermediate (Watts et al., 2003).(B) Side and top views of the electron density (2Fo-Fc) map for the covalent sialyl-tyrosine adduct (for clarity, Tyr342 has been omitted in the right-hand view).
 
  The above figure is reprinted by permission from Cell Press: Structure (2004, 12, 775-784) copyright 2004.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21253654 J.A.Harrison, K.P.Kartha, E.J.Fournier, T.L.Lowary, C.Malet, U.J.Nilsson, O.Hindsgaul, S.Schenkman, J.H.Naismith, and R.A.Field (2011).
Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries.
  Org Biomol Chem, 9, 1653-1660.  
21468399 R.Ĺ ardzík, R.Sharma, S.Kaloo, J.Voglmeir, P.R.Crocker, and S.L.Flitsch (2011).
Chemoenzymatic synthesis of sialooligosaccharides on arrays for studies of cell surface adhesion.
  Chem Commun (Camb), 47, 5425-5427.  
21240549 T.Lieke, D.Gröbe, V.Blanchard, D.Grunow, R.Tauber, M.Zimmermann-Kordmann, T.Jacobs, and W.Reutter (2011).
Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines.
  Glycoconj J, 28, 31-37.  
20124697 E.C.Schulz, P.Neumann, R.Gerardy-Schahn, G.M.Sheldrick, and R.Ficner (2010).
Structure analysis of endosialidase NF at 0.98 A resolution.
  Acta Crystallogr D Biol Crystallogr, 66, 176-180.
PDB code: 3ju4
20441732 F.L.Mitchell, S.M.Miles, J.Neres, E.V.Bichenkova, and R.A.Bryce (2010).
Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase.
  Biophys J, 98, L38-L40.  
19880425 J.Cheng, S.Huang, H.Yu, Y.Li, K.Lau, and X.Chen (2010).
Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides.
  Glycobiology, 20, 260-268.  
  20020717 X.Chen, and A.Varki (2010).
Advances in the biology and chemistry of sialic acids.
  ACS Chem Biol, 5, 163-176.  
19780074 J.H.Kim, H.W.Ryu, J.H.Shim, K.H.Park, and S.G.Withers (2009).
Development of new and selective Trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives.
  Chembiochem, 10, 2475-2479.  
19920252 M.V.Chuenkova, and M.PereiraPerrin (2009).
Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy.
  Sci Signal, 2, ra74.  
19216574 O.Demir, and A.E.Roitberg (2009).
Modulation of catalytic function by differential plasticity of the active site: case study of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase.
  Biochemistry, 48, 3398-3406.  
19269961 R.Carapito, A.Imberty, J.M.Jeltsch, S.C.Byrns, P.H.Tam, T.L.Lowary, A.Varrot, and V.Phalip (2009).
Molecular Basis of Arabinobio-hydrolase Activity in Phytopathogenic Fungi: CRYSTAL STRUCTURE AND CATALYTIC MECHANISM OF FUSARIUM GRAMINEARUM GH93 EXO-{alpha}-L-ARABINANASE.
  J Biol Chem, 284, 12285-12296.
PDB codes: 2w5n 2w5o
19279191 R.Suzuki, Z.Fujimoto, S.Ito, S.Kawahara, S.Kaneko, K.Taira, T.Hasegawa, and A.Kuno (2009).
Crystallographic snapshots of an entire reaction cycle for a retaining xylanase from Streptomyces olivaceoviridis E-86.
  J Biochem, 146, 61-70.
PDB codes: 2d1z 2d20 2d22 2d23 2d24
18625334 A.Buschiazzo, and P.M.Alzari (2008).
Structural insights into sialic acid enzymology.
  Curr Opin Chem Biol, 12, 565-572.  
  19727327 D.B.Berkowitz, K.R.Karukurichi, R.de la Salud-Bea, D.L.Nelson, and C.D.McCune (2008).
Use of Fluorinated Functionality in Enzyme Inhibitor Development: Mechanistic and Analytical Advantages.
  J Fluor Chem, 129, 731-742.  
18558099 D.J.Vocadlo, and G.J.Davies (2008).
Mechanistic insights into glycosidase chemistry.
  Curr Opin Chem Biol, 12, 539-555.  
18949046 L.Ratier, M.Urrutia, G.Paris, L.Zarebski, A.C.Frasch, and F.A.Goldbaum (2008).
Relevance of the diversity among members of the Trypanosoma cruzi trans-sialidase family analyzed with camelids single-domain antibodies.
  PLoS ONE, 3, e3524.  
18218621 S.L.Newstead, J.A.Potter, J.C.Wilson, G.Xu, C.H.Chien, A.G.Watts, S.G.Withers, and G.L.Taylor (2008).
The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates.
  J Biol Chem, 283, 9080-9088.
PDB codes: 2bf6 2vk5 2vk6 2vk7
18019540 V.L.Campo, I.Carvalho, S.Allman, B.G.Davis, and R.A.Field (2007).
Chemical and chemoenzymatic synthesis of glycosyl-amino acids and glycopeptides related to Trypanosoma cruzi mucins.
  Org Biomol Chem, 5, 2645-2657.  
16819962 J.Mucci, M.G.Risso, M.S.Leguizamón, A.C.Frasch, and O.Campetella (2006).
The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation.
  Cell Microbiol, 8, 1086-1095.  
16823793 V.A.Money, N.L.Smith, A.Scaffidi, R.V.Stick, H.J.Gilbert, and G.J.Davies (2006).
Substrate distortion by a lichenase highlights the different conformational itineraries harnessed by related glycoside hydrolases.
  Angew Chem Int Ed Engl, 45, 5136-5140.
PDB codes: 2cip 2cit
16206228 J.N.Watson, S.Newstead, A.A.Narine, G.Taylor, and A.J.Bennet (2005).
Two nucleophilic mutants of the Micromonospora viridifaciens sialidase operate with retention of configuration by two different mechanisms.
  Chembiochem, 6, 1999-2004.
PDB code: 1wcq
15864320 J.N.Watson, T.L.Knoll, J.H.Chen, D.T.Chou, T.J.Borgford, and A.J.Bennet (2005).
Use of conformationally restricted pyridinium alpha-D-N-acetylneuraminides to probe specificity in bacterial and viral sialidases.
  Biochem Cell Biol, 83, 115-122.  
15608653 K.Stummeyer, A.Dickmanns, M.Mühlenhoff, R.Gerardy-Schahn, and R.Ficner (2005).
Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F.
  Nat Struct Mol Biol, 12, 90-96.
PDB codes: 1v0e 1v0f
15893670 P.Yuan, T.B.Thompson, B.A.Wurzburg, R.G.Paterson, R.A.Lamb, and T.S.Jardetzky (2005).
Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose.
  Structure, 13, 803-815.
PDB codes: 1z4v 1z4w 1z4x 1z4y 1z4z 1z50
15502328 S.Newstead, C.H.Chien, M.Taylor, and G.Taylor (2004).
Crystallization and atomic resolution X-ray diffraction of the catalytic domain of the large sialidase, nanI, from Clostridium perfringens.
  Acta Crystallogr D Biol Crystallogr, 60, 2063-2066.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.