PDBsum entry 1rgs

Go to PDB code: 
protein ligands links
Kinase PDB id
Protein chain
264 a.a. *
CMP ×2
* Residue conservation analysis
PDB id:
Name: Kinase
Title: Regulatory subunit of camp dependent protein kinase
Structure: Camp dependent protein kinase. Chain: a. Fragment: regulatory subunit. Synonym: ri(alpha). Engineered: yes. Mutation: yes
Source: Bos taurus. Cattle. Organism_taxid: 9913. Gene: bovine skeleton muscle. Expressed in: escherichia coli. Expression_system_taxid: 562.
2.80Å     R-factor:   0.217    
Authors: Y.Su,W.R.G.Dostmann,F.W.Herberg,K.Durick,N.-H.Xuong,L.Ten Eyck,S.S.Taylor,K.I.Varughese
Key ref: Y.Su et al. (1995). Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science, 269, 807-813. PubMed id: 7638597 DOI: 10.1126/science.7638597
21-Jun-95     Release date:   07-Dec-96    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P00514  (KAP0_BOVIN) -  cAMP-dependent protein kinase type I-alpha regulatory subunit
380 a.a.
264 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cAMP-dependent protein kinase complex   1 term 
  Biological process     regulation of protein phosphorylation   1 term 
  Biochemical function     cAMP-dependent protein kinase regulator activity     1 term  


DOI no: 10.1126/science.7638597 Science 269:807-813 (1995)
PubMed id: 7638597  
Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains.
Y.Su, W.R.Dostmann, F.W.Herberg, K.Durick, N.H.Xuong, L.Ten Eyck, S.S.Taylor, K.I.Varughese.
In the molecular scheme of living organisms, adenosine 3',5'-monophosphate (cyclic AMP or cAMP) has been a universal second messenger. In eukaryotic cells, the primary receptors for cAMP are the regulatory subunits of cAMP-dependent protein kinase. The crystal structure of a 1-91 deletion mutant of the type I alpha regulatory subunit was refined to 2.8 A resolution. Each of the two tandem cAMP binding domains provides an extensive network of hydrogen bonds that buries the cyclic phosphate and the ribose between two beta strands that are linked by a short alpha helix. Each adenine base stacks against an aromatic ring that lies outside the beta barrel. This structure provides a molecular basis for understanding how cAMP binds cooperatively to its receptor protein, thus mediating activation of the kinase.

Literature references that cite this PDB file's key reference

  PubMed id Reference
20729090 A.Cukkemane, R.Seifert, and U.B.Kaupp (2011).
Cooperative and uncooperative cyclic-nucleotide-gated ion channels.
  Trends Biochem Sci, 36, 55-64.  
  21643460 J.H.Lee, S.Li, T.Liu, S.Hsu, C.Kim, V.L.Woods, and D.E.Casteel (2011).
The amino terminus of cGMP-dependent protein kinase Iβ increases the dynamics of the protein's cGMP-binding pockets.
  Int J Mass Spectrom, 302, 44-52.  
20663247 N.Wurtz, C.Chapus, J.Desplans, and D.Parzy (2011).
cAMP-dependent protein kinase from Plasmodium falciparum: an update.
  Parasitology, 138, 1.  
21430265 S.Schünke, M.Stoldt, J.Lecher, U.B.Kaupp, and D.Willbold (2011).
Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel.
  Proc Natl Acad Sci U S A, 108, 6121-6126.
PDB code: 2kxl
21070946 J.Rinaldi, J.Wu, J.Yang, C.Y.Ralston, B.Sankaran, S.Moreno, and S.S.Taylor (2010).
Structure of yeast regulatory subunit: a glimpse into the evolution of PKA signaling.
  Structure, 18, 1471-1482.
PDB code: 3of1
20367611 O.N.Rogacheva, A.V.Popov, E.V.Savvateeva-Popova, V.E.Stefanov, and B.F.Shchegolev (2010).
Thermodynamic analysis of protein kinase A Ialpha activation.
  Biochemistry (Mosc), 75, 233-241.  
20512974 T.J.Sjoberg, A.P.Kornev, and S.S.Taylor (2010).
Dissecting the cAMP-inducible allosteric switch in protein kinase A RIalpha.
  Protein Sci, 19, 1213-1221.
PDB code: 3iia
19403523 R.Das, S.Chowdhury, M.T.Mazhab-Jafari, S.Sildas, R.Selvaratnam, and G.Melacini (2009).
Dynamically driven ligand selectivity in cyclic nucleotide binding domains.
  J Biol Chem, 284, 23682-23696.  
19063708 S.Naviglio, M.Caraglia, A.Abbruzzese, E.Chiosi, D.Di Gesto, M.Marra, M.Romano, A.Sorrentino, L.Sorvillo, A.Spina, and G.Illiano (2009).
Protein kinase A as a biological target in cancer therapy.
  Expert Opin Ther Targets, 13, 83-92.  
19465888 S.Schünke, M.Stoldt, K.Novak, U.B.Kaupp, and D.Willbold (2009).
Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP.
  EMBO Rep, 10, 729-735.
PDB code: 2k0g
19801409 T.Endoh, and J.N.Engel (2009).
CbpA: a polarly localized novel cyclic AMP-binding protein in Pseudomonas aeruginosa.
  J Bacteriol, 191, 7193-7205.  
19671703 T.I.Brelidze, A.E.Carlson, and W.N.Zagotta (2009).
Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods.
  J Biol Chem, 284, 27989-27997.  
19553663 T.Tsalkova, D.K.Blumenthal, F.C.Mei, M.A.White, and X.Cheng (2009).
Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities.
  J Biol Chem, 284, 23644-23651.  
18404204 A.P.Kornev, S.S.Taylor, and L.F.Ten Eyck (2008).
A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains.
  PLoS Comput Biol, 4, e1000056.  
17716863 G.G.Holz, O.G.Chepurny, and F.Schwede (2008).
Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors.
  Cell Signal, 20, 10-20.  
18426879 H.J.Newton, F.M.Sansom, J.Dao, C.Cazalet, H.Bruggemann, C.Albert-Weissenberger, C.Buchrieser, N.P.Cianciotto, and E.L.Hartland (2008).
Significant role for ladC in initiation of Legionella pneumophila infection.
  Infect Immun, 76, 3075-3085.  
18660803 H.Rehmann, E.Arias-Palomo, M.A.Hadders, F.Schwede, O.Llorca, and J.L.Bos (2008).
Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B.
  Nature, 455, 124-127.
PDB code: 3cf6
18619611 S.L.Altieri, G.M.Clayton, W.R.Silverman, A.O.Olivares, E.M.De la Cruz, L.R.Thomas, and J.H.Morais-Cabral (2008).
Structural and energetic analysis of activation by a cyclic nucleotide binding domain.
  J Mol Biol, 381, 655-669.
PDB codes: 3cl1 3clp 3co2
17996741 S.S.Taylor, C.Kim, C.Y.Cheng, S.H.Brown, J.Wu, and N.Kannan (2008).
Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.
  Biochim Biophys Acta, 1784, 16-26.  
18338824 S.Schweinsberg, D.Moll, N.C.Burghardt, C.Hahnefeld, F.Schwede, B.Zimmermann, S.Drewianka, L.Werner, F.Kleinjung, H.G.Genieser, J.Schuchhardt, and F.W.Herberg (2008).
Systematic interpretation of cyclic nucleotide binding studies using KinetXBase.
  Proteomics, 8, 1212-1220.  
18604457 X.Cheng, Z.Ji, T.Tsalkova, and F.Mei (2008).
Epac and PKA: a tale of two intracellular cAMP receptors.
  Acta Biochim Biophys Sin (Shanghai), 40, 651-662.  
17403045 A.Scholten, H.Fuss, A.J.Heck, and W.R.Dostmann (2007).
The hinge region operates as a stability switch in cGMP-dependent protein kinase I alpha.
  FEBS J, 274, 2274-2286.  
17889648 C.Kim, C.Y.Cheng, S.A.Saldanha, and S.S.Taylor (2007).
PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation.
  Cell, 130, 1032-1043.
PDB code: 2qcs
17261079 D.Moll, S.Schweinsberg, C.Hammann, and F.W.Herberg (2007).
Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A.
  Biol Chem, 388, 163-172.  
17337635 E.M.Rubenstein, and M.C.Schmidt (2007).
Mechanisms regulating the protein kinases of Saccharomyces cerevisiae.
  Eukaryot Cell, 6, 571-583.  
17562314 G.E.Flynn, K.D.Black, L.D.Islas, B.Sankaran, and W.N.Zagotta (2007).
Structure and rearrangements in the carboxy-terminal region of SpIH channels.
  Structure, 15, 671-682.
PDB codes: 2ptm 2q0a
17183361 H.Rehmann, A.Wittinghofer, and J.L.Bos (2007).
Capturing cyclic nucleotides in action: snapshots from crystallographic studies.
  Nat Rev Mol Cell Biol, 8, 63-73.  
17586635 J.Clardy, and S.F.Brady (2007).
Cyclic AMP directly activates NasP, an N-acyl amino acid antibiotic biosynthetic enzyme cloned from an uncultured beta-proteobacterium.
  J Bacteriol, 189, 6487-6489.  
17255938 J.W.Scott, F.A.Ross, J.K.Liu, and D.G.Hardie (2007).
Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the gamma subunit.
  EMBO J, 26, 806-815.  
17932298 J.Wu, S.H.Brown, S.von Daake, and S.S.Taylor (2007).
PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity.
  Science, 318, 274-279.
PDB code: 2qvs
17596845 M.Abu-Abed, R.Das, L.Wang, and G.Melacini (2007).
Definition of an electrostatic relay switch critical for the cAMP-dependent activation of protein kinase A as revealed by the D170A mutant of RIalpha.
  Proteins, 69, 112-124.  
17306374 M.E.Doyle, and J.M.Egan (2007).
Mechanisms of action of glucagon-like peptide 1 in the pancreas.
  Pharmacol Ther, 113, 546-593.  
18076763 N.Kannan, J.Wu, G.S.Anand, S.Yooseph, A.F.Neuwald, C.J.Venter, and S.S.Taylor (2007).
Evolution of allostery in the cyclic nucleotide binding module.
  Genome Biol, 8, R264.  
17182741 R.Das, V.Esposito, M.Abu-Abed, G.S.Anand, S.S.Taylor, and G.Melacini (2007).
cAMP activation of PKA defines an ancient signaling mechanism.
  Proc Natl Acad Sci U S A, 104, 93-98.  
16522806 B.A.Manjasetty, K.Büssow, M.Fieber-Erdmann, Y.Roske, J.Gobom, C.Scheich, F.Götz, F.H.Niesen, and U.Heinemann (2006).
Crystal structure of Homo sapiens PTD012 reveals a zinc-containing hydrolase fold.
  Protein Sci, 15, 914-920.
PDB code: 1xcr
16322564 D.Vigil, J.H.Lin, C.A.Sotriffer, J.K.Pennypacker, J.A.McCammon, and S.S.Taylor (2006).
A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.
  Protein Sci, 15, 113-121.  
16452984 H.Rehmann, J.Das, P.Knipscheer, A.Wittinghofer, and J.L.Bos (2006).
Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state.
  Nature, 439, 625-628.
PDB code: 2byv
16407073 J.Gullingsrud, C.Kim, S.S.Taylor, and J.A.McCammon (2006).
Dynamic binding of PKA regulatory subunit RI alpha.
  Structure, 14, 141-149.  
16625363 J.Trewhella (2006).
Structural themes and variations in protein kinase A as seen by small-angle scattering and neutron contrast variation.
  Eur Biophys J, 35, 585-589.  
16460277 K.B.Craven, and W.N.Zagotta (2006).
CNG and HCN channels: two peas, one pod.
  Annu Rev Physiol, 68, 375-401.  
16500960 M.Berrera, S.Pantano, and P.Carloni (2006).
cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations.
  Biophys J, 90, 3428-3433.  
17073662 R.L.Brown, T.Strassmaier, J.D.Brady, and J.W.Karpen (2006).
The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness.
  Curr Pharm Des, 12, 3597-3613.  
17176054 S.Yu, F.Fan, S.C.Flores, F.Mei, and X.Cheng (2006).
Dissecting the mechanism of Epac activation via hydrogen-deuterium exchange FT-IR and structural modeling.
  Biochemistry, 45, 15318-15326.  
16207083 C.Hahnefeld, D.Moll, M.Goette, and F.W.Herberg (2005).
Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA.
  Biol Chem, 386, 623-631.  
15644130 D.Bridges, M.E.Fraser, and G.B.Moorhead (2005).
Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes.
  BMC Bioinformatics, 6, 6.  
15981246 D.Law, M.Hotchko, and L.Ten Eyck (2005).
Progress in computation and amide hydrogen exchange for prediction of protein-protein complexes.
  Proteins, 60, 302-307.  
15618393 H.M.Berman, L.F.Ten Eyck, D.S.Goodsell, N.M.Haste, A.Kornev, and S.S.Taylor (2005).
The cAMP binding domain: an ancient signaling module.
  Proc Natl Acad Sci U S A, 102, 45-50.  
16177794 K.L.Dodge-Kafka, J.Soughayer, G.C.Pare, J.J.Carlisle Michel, L.K.Langeberg, M.S.Kapiloff, and J.D.Scott (2005).
The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways.
  Nature, 437, 574-578.  
15963351 M.Baruscotti, A.Bucchi, and D.Difrancesco (2005).
Physiology and pharmacology of the cardiac pacemaker ("funny") current.
  Pharmacol Ther, 107, 59-79.  
15727824 Y.Kimura, H.Nakato, K.Ishibashi, and S.Kobayashi (2005).
A Myxococcus xanthus CbpB containing two cAMP-binding domains is involved in temperature and osmotic tolerances.
  FEMS Microbiol Lett, 244, 75-83.  
15550244 G.M.Clayton, W.R.Silverman, L.Heginbotham, and J.H.Morais-Cabral (2004).
Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel.
  Cell, 119, 615-627.
PDB codes: 1u12 1vp6
  14722619 J.W.Scott, S.A.Hawley, K.A.Green, M.Anis, G.Stewart, G.A.Scullion, D.G.Norman, and D.G.Hardie (2004).
CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations.
  J Clin Invest, 113, 274-284.  
15274925 J.Wu, S.Brown, N.H.Xuong, and S.S.Taylor (2004).
RIalpha subunit of PKA: a cAMP-free structure reveals a hydrophobic capping mechanism for docking cAMP into site B.
  Structure, 12, 1057-1065.
PDB code: 1rl3
14583592 G.S.Anand, D.Law, J.G.Mandell, A.N.Snead, I.Tsigelny, S.S.Taylor, L.F.Ten Eyck, and E.A.Komives (2003).
Identification of the protein kinase A regulatory RIalpha-catalytic subunit interface by amide H/2H exchange and protein docking.
  Proc Natl Acad Sci U S A, 100, 13264-13269.
PDB code: 1pvk
12469113 H.Rehmann, B.Prakash, E.Wolf, A.Rueppel, Rooij, J.L.Bos, and A.Wittinghofer (2003).
Structure and regulation of the cAMP-binding domains of Epac2.
  Nat Struct Biol, 10, 26-32.
PDB code: 1o7f
14506476 J.L.Bos (2003).
Epac: a new cAMP target and new avenues in cAMP research.
  Nat Rev Mol Cell Biol, 4, 733-738.  
12784214 K.M.Zawadzki, C.P.Pan, M.D.Barkley, D.Johnson, and S.S.Taylor (2003).
Endogenous tryptophan residues of cAPK regulatory subunit type IIbeta reveal local variations in environments and dynamics.
  Proteins, 51, 552-561.  
12930997 K.M.Zawadzki, Y.Hamuro, J.S.Kim, S.Garrod, D.D.Stranz, S.S.Taylor, and V.L.Woods (2003).
Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS).
  Protein Sci, 12, 1980-1990.  
14570562 K.Matulef, and W.N.Zagotta (2003).
Cyclic nucleotide-gated ion channels.
  Annu Rev Cell Dev Biol, 19, 23-44.  
12591946 M.E.Wall, S.H.Francis, J.D.Corbin, K.Grimes, R.Richie-Jannetta, J.Kotera, B.A.Macdonald, R.R.Gibson, and J.Trewhella (2003).
Mechanisms associated with cGMP binding and activation of cGMP-dependent protein kinase.
  Proc Natl Acad Sci U S A, 100, 2380-2385.  
12866047 M.Punta, A.Cavalli, V.Torre, and P.Carloni (2003).
Molecular modeling studies on CNG channel from bovine retinal rod: a structural model of the cyclic nucleotide-binding domain.
  Proteins, 52, 332-338.  
12968185 W.N.Zagotta, N.B.Olivier, K.D.Black, E.C.Young, R.Olson, and E.Gouaux (2003).
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
  Nature, 425, 200-205.
PDB codes: 1q3e 1q43 1q5o
11807172 J.J.Michel, and J.D.Scott (2002).
AKAP mediated signal transduction.
  Annu Rev Pharmacol Toxicol, 42, 235-257.  
12402047 J.M.Enserink, A.E.Christensen, Rooij, M.van Triest, F.Schwede, H.G.Genieser, S.O.Døskeland, J.L.Blank, and J.L.Bos (2002).
A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK.
  Nat Cell Biol, 4, 901-906.  
12011437 J.M.Goldberg, L.Bosgraaf, P.J.Van Haastert, and J.L.Smith (2002).
Identification of four candidate cGMP targets in Dictyostelium.
  Proc Natl Acad Sci U S A, 99, 6749-6754.  
12367509 K.Matulef, and W.Zagotta (2002).
Multimerization of the ligand binding domains of cyclic nucleotide-gated channels.
  Neuron, 36, 93.  
12048242 M.C.Trudeau, and W.N.Zagotta (2002).
Mechanism of calcium/calmodulin inhibition of rod cyclic nucleotide-gated channels.
  Proc Natl Acad Sci U S A, 99, 8424-8429.  
12429831 M.E.Meima, R.M.Biondi, and P.Schaap (2002).
Identification of a novel type of cGMP phosphodiesterase that is defective in the chemotactic stmF mutants.
  Mol Biol Cell, 13, 3870-3877.  
12496096 M.Mazzolini, M.Punta, and V.Torre (2002).
Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
  Biophys J, 83, 3283-3295.  
  11696610 E.C.Young, D.M.Sciubba, and S.A.Siegelbaum (2001).
Efficient coupling of ligand binding to channel opening by the binding domain of a modulatory (beta) subunit of the olfactory cyclic nucleotide-gated channel.
  J Gen Physiol, 118, 523-546.  
11325927 J.Kwak, L.A.McCue, K.Trczianka, and K.E.Kendrick (2001).
Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus.
  J Bacteriol, 183, 3004-3015.  
  11331358 S.Chen, J.Wang, and S.A.Siegelbaum (2001).
Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide.
  J Gen Physiol, 117, 491-504.  
11342137 T.C.Diller, Madhusudan, N.H.Xuong, and S.S.Taylor (2001).
Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit.
  Structure, 9, 73-82.
PDB code: 1cx4
11733015 T.Shalaby, M.Liniger, and T.Seebeck (2001).
The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei.
  Eur J Biochem, 268, 6197-6206.  
11181956 U.B.Kaupp, and R.Seifert (2001).
Molecular diversity of pacemaker ion channels.
  Annu Rev Physiol, 63, 235-257.  
10801316 D.A.Leon, J.M.Canaves, and S.S.Taylor (2000).
Probing the multidomain structure of the type I regulatory subunit of cAMP-dependent protein kinase using mutational analysis: role and environment of endogenous tryptophans.
  Biochemistry, 39, 5662-5671.  
10944347 D.E.Danley, M.E.Haggan, D.Cunningham, K.F.Fennell, T.A.Pauly, and P.K.LeMotte (2000).
A crystallizable form of RIIbeta regulatory domain obtained by limited proteolysis.
  Acta Crystallogr D Biol Crystallogr, 56, 1038-1041.  
11112551 F.Li, M.Gangal, J.M.Jones, J.Deich, K.E.Lovett, S.S.Taylor, and D.A.Johnson (2000).
Consequences of cAMP and catalytic-subunit binding on the flexibility of the A-kinase regulatory subunit.
  Biochemistry, 39, 15626-15632.  
10913291 F.Schwede, A.Christensen, S.Liauw, T.Hippe, R.Kopperud, B.Jastorff, and S.O.Døskeland (2000).
8-Substituted cAMP analogues reveal marked differences in adaptability, hydrogen bonding, and charge accommodation between homologous binding sites (AI/AII and BI/BII) in cAMP kinase I and II.
  Biochemistry, 39, 8803-8812.  
11008001 F.Schwede, E.Maronde, H.Genieser, and B.Jastorff (2000).
Cyclic nucleotide analogs as biochemical tools and prospective drugs.
  Pharmacol Ther, 87, 199-226.  
10777729 M.S.Shapiro, and W.N.Zagotta (2000).
Structural basis for ligand selectivity of heteromeric olfactory cyclic nucleotide-gated channels.
  Biophys J, 78, 2307-2320.  
10801446 N.Pham, I.Cheglakov, C.A.Koch, Hoog, M.F.Moran, and D.Rotin (2000).
The guanine nucleotide exchange factor CNrasGEF activates ras in response to cAMP and cGMP.
  Curr Biol, 10, 555-558.  
  10919868 S.E.Gordon (2000).
"Light" reading: targeting tryptophans in cyclic nucleotide-gated channels.
  J Gen Physiol, 116, 223-225.  
  11206066 W.W.Muhonen, and J.B.Shabb (2000).
Resonant mirror biosensor analysis of type Ialpha cAMP-dependent protein kinase B domain--cyclic nucleotide interactions.
  Protein Sci, 9, 2446-2456.  
11032796 Y.S.Ho, L.M.Burden, and J.H.Hurley (2000).
Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor.
  EMBO J, 19, 5288-5299.
PDB codes: 1f5m 1fl4
10027297 D.G.Chain, A.Casadio, S.Schacher, A.N.Hegde, M.Valbrun, N.Yamamoto, A.L.Goldberg, D.Bartsch, E.R.Kandel, and J.H.Schwartz (1999).
Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia.
  Neuron, 22, 147-156.  
10378271 H.A.Heaslet, and W.E.Royer (1999).
The 2.7 A crystal structure of deoxygenated hemoglobin from the sea lamprey (Petromyzon marinus): structural basis for a lowered oxygen affinity and Bohr effect.
  Structure, 7, 517-526.
PDB code: 3lhb
10482246 I.M.Shammat, and S.E.Gordon (1999).
Stoichiometry and arrangement of subunits in rod cyclic nucleotide-gated channels.
  Neuron, 23, 809-819.  
  9874685 P.Paoletti, E.C.Young, and S.A.Siegelbaum (1999).
C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating.
  J Gen Physiol, 113, 17-34.  
  11063036 M.I.Mednieks, N.N.Merheb, D.R.Eisenmann, A.E.Zaki, and A.R.Hand (1998).
Cyclic AMP-receptor proteins in the enamel matrix.
  Connect Tissue Res, 38, 287.  
9860838 S.P.Scott, and J.C.Tanaka (1998).
Three residues predicted by molecular modeling to interact with the purine moiety alter ligand binding and channel gating in cyclic nucleotide-gated channels.
  Biochemistry, 37, 17239-17252.  
9009262 K.A.Watson, R.Schinzel, D.Palm, and L.N.Johnson (1997).
The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase.
  EMBO J, 16, 1.  
  9300482 R.M.Gibson, Y.Ji-Buechler, and S.S.Taylor (1997).
Identification of electrostatic interaction sites between the regulatory and catalytic subunits of cyclic AMP-dependent protein kinase.
  Protein Sci, 6, 1825-1834.  
8744304 M.D.Varnum, and W.N.Zagotta (1996).
Subunit interactions in the activation of cyclic nucleotide-gated ion channels.
  Biophys J, 70, 2667-2679.  
8672432 S.E.Gordon, J.C.Oakley, M.D.Varnum, and W.N.Zagotta (1996).
Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels.
  Biochemistry, 35, 3994-4001.  
8548288 S.K.Sullivan, L.B.Agellon, and R.Schick (1995).
Identification and partial characterization of a domain in CFTR that may bind cyclic nucleotides directly.
  Curr Biol, 5, 1159-1167.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.