 |
PDBsum entry 1qw9
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Hydrolase
|
 |
|
Title:
|
 |
Crystal structure of a family 51 alpha-l-arabinofuranosidase in complex with 4-nitrophenyl-ara
|
|
Structure:
|
 |
Alpha-l-arabinofuranosidase. Chain: a, b. Synonym: arabinosidase. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Geobacillus stearothermophilus. Organism_taxid: 1422. Gene: abfa. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Biol. unit:
|
 |
Hexamer (from PDB file)
|
|
Resolution:
|
 |
|
1.20Å
|
R-factor:
|
0.173
|
R-free:
|
0.179
|
|
|
Authors:
|
 |
K.Hoevel,D.Shallom,K.Niefind,V.Belakhov,G.Shoham,T.Bassov,Y.Shoham, D.Schomburg
|
|
Key ref:
|
 |
K.Hövel
et al.
(2003).
Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase.
Embo J,
22,
4922-4932.
PubMed id:
|
 |
|
Date:
|
 |
|
01-Sep-03
|
Release date:
|
07-Oct-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9XBQ3
(IABF_GEOSE) -
Intracellular exo-alpha-(1->5)-L-arabinofuranosidase from Geobacillus stearothermophilus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
502 a.a.
497 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 1 residue position (black
cross)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.2.1.55
- non-reducing end alpha-L-arabinofuranosidase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of terminal non-reducing alpha-L-arabinofuranoside residues in alpha-L-arabinosides.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Embo J
22:4922-4932
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase.
|
|
K.Hövel,
D.Shallom,
K.Niefind,
V.Belakhov,
G.Shoham,
T.Baasov,
Y.Shoham,
D.Schomburg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
High-resolution crystal structures of alpha-L-arabinofuranosidase from
Geobacillus stearothermophilus T-6, a family 51 glycosidase, are described. The
enzyme is a hexamer, and each monomer is organized into two domains: a
(beta/alpha)8-barrel and a 12-stranded beta sandwich with jelly-roll topology.
The structures of the Michaelis complexes with natural and synthetic substrates,
and of the transient covalent arabinofuranosyl-enzyme intermediate represent two
stable states in the double displacement mechanism, and allow thorough
examination of the catalytic mechanism. The arabinofuranose sugar is tightly
bound and distorted by an extensive network of hydrogen bonds. The two catalytic
residues are 4.7 A apart, and together with other conserved residues contribute
to the stabilization of the oxocarbenium ion-like transition state via charge
delocalization and specific protein-substrate interactions. The enzyme is an
anti-protonator, and a 1.7 A electrophilic migration of the anomeric carbon
takes place during the hydrolysis.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
G.Agarwal,
S.Mahajan,
N.Srinivasan,
and
A.G.de Brevern
(2011).
Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks.
|
| |
PLoS One,
6,
e17826.
|
 |
|
|
|
|
 |
C.S.Park,
M.H.Yoo,
K.H.Noh,
and
D.K.Oh
(2010).
Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases.
|
| |
Appl Microbiol Biotechnol,
87,
9.
|
 |
|
|
|
|
 |
S.B.Daly,
J.E.Urquhart,
E.Hilton,
E.A.McKenzie,
R.A.Kammerer,
M.Lewis,
B.Kerr,
H.Stuart,
D.Donnai,
D.A.Long,
B.Burgu,
O.Aydogdu,
M.Derbent,
S.Garcia-Minaur,
W.Reardon,
B.Gener,
S.Shalev,
R.Smith,
A.S.Woolf,
G.C.Black,
and
W.G.Newman
(2010).
Mutations in HPSE2 cause urofacial syndrome.
|
| |
Am J Hum Genet,
86,
963-969.
|
 |
|
|
|
|
 |
Y.R.Lim,
R.Y.Yoon,
E.S.Seo,
Y.S.Kim,
C.S.Park,
and
D.K.Oh
(2010).
Hydrolytic properties of a thermostable α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus.
|
| |
J Appl Microbiol,
109,
1188-1197.
|
 |
|
|
|
|
 |
L.Fux,
N.Feibish,
V.Cohen-Kaplan,
S.Gingis-Velitski,
S.Feld,
C.Geffen,
I.Vlodavsky,
and
N.Ilan
(2009).
Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling.
|
| |
Cancer Res,
69,
1758-1767.
|
 |
|
|
|
|
 |
R.Carapito,
A.Imberty,
J.M.Jeltsch,
S.C.Byrns,
P.H.Tam,
T.L.Lowary,
A.Varrot,
and
V.Phalip
(2009).
Molecular Basis of Arabinobio-hydrolase Activity in Phytopathogenic Fungi: CRYSTAL STRUCTURE AND CATALYTIC MECHANISM OF FUSARIUM GRAMINEARUM GH93 EXO-{alpha}-L-ARABINANASE.
|
| |
J Biol Chem,
284,
12285-12296.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Suzuki,
Z.Fujimoto,
S.Ito,
S.Kawahara,
S.Kaneko,
K.Taira,
T.Hasegawa,
and
A.Kuno
(2009).
Crystallographic snapshots of an entire reaction cycle for a retaining xylanase from Streptomyces olivaceoviridis E-86.
|
| |
J Biochem,
146,
61-70.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Ichinose,
M.Yoshida,
Z.Fujimoto,
and
S.Kaneko
(2008).
Characterization of a modular enzyme of exo-1,5-alpha-L: -arabinofuranosidase and arabinan binding module from Streptomyces avermitilis NBRC14893.
|
| |
Appl Microbiol Biotechnol,
80,
399-408.
|
 |
|
|
|
|
 |
S.Canakci,
M.Kacagan,
K.Inan,
A.O.Belduz,
and
B.C.Saha
(2008).
Cloning, purification, and characterization of a thermostable alpha-L-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari.
|
| |
Appl Microbiol Biotechnol,
81,
61-68.
|
 |
|
|
|
|
 |
A.Ben-David,
T.Bravman,
Y.S.Balazs,
M.Czjzek,
D.Schomburg,
G.Shoham,
and
Y.Shoham
(2007).
Glycosynthase activity of Geobacillus stearothermophilus GH52 beta-xylosidase: efficient synthesis of xylooligosaccharides from alpha-D-xylopyranosyl fluoride through a conjugated reaction.
|
| |
Chembiochem,
8,
2145-2151.
|
 |
|
|
|
|
 |
S.Shulami,
G.Zaide,
G.Zolotnitsky,
Y.Langut,
G.Feld,
A.L.Sonenshein,
and
Y.Shoham
(2007).
A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus.
|
| |
Appl Environ Microbiol,
73,
874-884.
|
 |
|
|
|
|
 |
Y.Kitago,
S.Karita,
N.Watanabe,
M.Kamiya,
T.Aizawa,
K.Sakka,
and
I.Tanaka
(2007).
Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum.
|
| |
J Biol Chem,
282,
35703-35711.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.T.Numan,
and
N.B.Bhosle
(2006).
Alpha-L-arabinofuranosidases: the potential applications in biotechnology.
|
| |
J Ind Microbiol Biotechnol,
33,
247-260.
|
 |
|
|
|
|
 |
A.L.Lovering,
S.S.Lee,
Y.W.Kim,
S.G.Withers,
and
N.C.Strynadka
(2005).
Mechanistic and structural analysis of a family 31 alpha-glycosidase and its glycosyl-enzyme intermediate.
|
| |
J Biol Chem,
280,
2105-2115.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Miyazaki
(2005).
Hyperthermophilic alpha-L: -arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein.
|
| |
Extremophiles,
9,
399-406.
|
 |
|
|
|
|
 |
M.R.Proctor,
E.J.Taylor,
D.Nurizzo,
J.P.Turkenburg,
R.M.Lloyd,
M.Vardakou,
G.J.Davies,
and
H.J.Gilbert
(2005).
Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A.
|
| |
Proc Natl Acad Sci U S A,
102,
2697-2702.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Miyanaga,
T.Koseki,
H.Matsuzawa,
T.Wakagi,
H.Shoun,
and
S.Fushinobu
(2004).
Expression, purification, crystallization and preliminary X-ray analysis of alpha-L-arabinofuranosidase B from Aspergillus kawachii.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1286-1288.
|
 |
|
|
|
|
 |
A.Miyanaga,
T.Koseki,
H.Matsuzawa,
T.Wakagi,
H.Shoun,
and
S.Fushinobu
(2004).
Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose.
|
| |
J Biol Chem,
279,
44907-44914.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |