spacer
spacer

PDBsum entry 1qut

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1qut

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
312 a.a. *
Ligands
NAG
Metals
_NA
Waters ×203
* Residue conservation analysis
PDB id:
1qut
Name: Hydrolase
Title: The soluble lytic transglycosylase slt35 from escherichia coli in complex with n-acetylglucosamine
Structure: Lytic murein transglycosylase b. Chain: a. Fragment: slt35. Synonym: murein hydrolase b, 35 kd soluble lytic transglycosylase, slt35. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Cellular_location: periplasm. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.44Å     R-factor:   0.191     R-free:   0.256
Authors: E.J.Van Asselt,A.J.Dijkstra,K.H.Kalk,B.Takacs,W.Keck,B.W.Dijkstra
Key ref:
E.J.van Asselt et al. (1999). Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure, 7, 1167-1180. PubMed id: 10545329 DOI: 10.1016/S0969-2126(00)80051-9
Date:
03-Jul-99     Release date:   15-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P41052  (MLTB_ECOLI) -  Membrane-bound lytic murein transglycosylase B from Escherichia coli (strain K12)
Seq:
Struc:
361 a.a.
312 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.4.2.2.n1  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0969-2126(00)80051-9 Structure 7:1167-1180 (1999)
PubMed id: 10545329  
 
 
Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand.
E.J.van Asselt, A.J.Dijkstra, K.H.Kalk, B.Takacs, W.Keck, B.W.Dijkstra.
 
  ABSTRACT  
 
BACKGROUND: Lytic transglycosylases are bacterial muramidases that catalyse the cleavage of the beta- 1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan with concomitant formation of a 1,6-anhydrobond in the MurNAc residue. These muramidases play an important role in the metabolism of the bacterial cell wall and might therefore be potential targets for the rational design of antibacterial drugs. One of the lytic transglycosylases is Slt35, a naturally occurring soluble fragment of the outer membrane bound lytic transglycosylase B (MltB) from Escherichia coli. RESULTS: The crystal structure of Slt35 has been determined at 1.7 A resolution. The structure reveals an ellipsoid molecule with three domains called the alpha, beta and core domains. The core domain is sandwiched between the alpha and beta domains. Its fold resembles that of lysozyme, but it contains a single metal ion binding site in a helix-loop-helix module that is surprisingly similar to the eukaryotic EF-hand calcium-binding fold. Interestingly, the Slt35 EF-hand loop consists of 15 residues instead of the usual 12 residues. The only other prokaryotic proteins with an EF-hand motif identified so far are the D-galactose-binding proteins. Residues from the alpha and core domains form a deep groove where the substrate fragment GlcNAc can be bound. CONCLUSIONS: The three-domain structure of Slt35 is completely different from the Slt70 structure, the only other lytic transglycosylase of known structure. Nevertheless, the core domain of Slt35 closely resembles the fold of the catalytic domain of Slt70, despite the absence of any obvious sequence similarity. Residue Glu162 of Slt35 is in an equivalent position to Glu478, the catalytic acid/base of Slt70. GlcNAc binds close to Glu162 in the deep groove. Moreover, mutation of Glu162 into a glutamine residue yielded a completely inactive enzyme. These observations indicate the location of the active site and strongly support a catalytic role for Glu162.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. The metal ion binding sites in (a) Slt35 and (b) carp parvalbumin B (PDB entry code 5cpv). (c,d) Superposition of the metal ion binding sites in Slt35 and parvalbumin B. Part (c) shows a close-up of the binding site, (d) shows the orientation and position of the EF-hand helices in the two proteins. Residues 90-98 of parvalbumin B (green) were superimposed on residues 237-245 of Slt35 (blue) with an rmsd of 0.32 Å 2 for nine Ca atoms. Residues of Slt35 that were not used in the superposition are shown in yellow. Helices E and F (green) belong to parvalbumin and the a helices H10 and H11 (yellow) are from Slt35.
 
  The above figure is reprinted by permission from Cell Press: Structure (1999, 7, 1167-1180) copyright 1999.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19333395 S.Sandhya, S.S.Rani, B.Pankaj, M.K.Govind, B.Offmann, N.Srinivasan, and R.Sowdhamini (2009).
Length variations amongst protein domain superfamilies and consequences on structure and function.
  PLoS ONE, 4, e4981.  
18708507 B.A.Legaree, and A.J.Clarke (2008).
Interaction of penicillin-binding protein 2 with soluble lytic transglycosylase B1 in Pseudomonas aeruginosa.
  J Bacteriol, 190, 6922-6926.  
17468031 E.Scheurwater, C.W.Reid, and A.J.Clarke (2008).
Lytic transglycosylases: bacterial space-making autolysins.
  Int J Biochem Cell Biol, 40, 586-591.  
18700763 M.Suvorov, M.Lee, D.Hesek, B.Boggess, and S.Mobashery (2008).
Lytic transglycosylase MltB of Escherichia coli and its role in recycling of peptidoglycan strands of bacterial cell wall.
  J Am Chem Soc, 130, 11878-11879.  
18266855 W.Vollmer, B.Joris, P.Charlier, and S.Foster (2008).
Bacterial peptidoglycan (murein) hydrolases.
  FEMS Microbiol Rev, 32, 259-286.  
17502382 K.E.van Straaten, T.R.Barends, B.W.Dijkstra, and A.M.Thunnissen (2007).
Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage.
  J Biol Chem, 282, 21197-21205.
PDB codes: 2pi8 2pic 2pjj
16359320 G.V.Mukamolova, A.G.Murzin, E.G.Salina, G.R.Demina, D.B.Kell, A.S.Kaprelyants, and M.Young (2006).
Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation.
  Mol Microbiol, 59, 84-98.  
15723078 M.Cohen-Gonsaud, P.Barthe, C.Bagnéris, B.Henderson, J.Ward, C.Roumestand, and N.H.Keep (2005).
The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes.
  Nat Struct Mol Biol, 12, 270-273.
PDB code: 1xsf
15039577 K.E.Van Straaten, B.W.Dijkstra, and A.M.Thunnissen (2004).
Purification, crystallization and preliminary X-ray analysis of the lytic transglycosylase MltA from Escherichia coli.
  Acta Crystallogr D Biol Crystallogr, 60, 758-760.  
12694917 D.J.Rigden, M.J.Jedrzejas, and M.Y.Galperin (2003).
An extracellular calcium-binding domain in bacteria with a distant relationship to EF-hands.
  FEMS Microbiol Lett, 221, 103-110.  
12875810 D.J.Rigden, M.J.Jedrzejas, O.V.Moroz, and M.Y.Galperin (2003).
Structural diversity of calcium-binding proteins in bacteria: single-handed EF-hands?
  Trends Microbiol, 11, 295-297.  
12493841 M.Palczewska, P.Groves, G.Batta, B.Heise, and J.Kuźnicki (2003).
Calretinin and calbindin D28k have different domain organizations.
  Protein Sci, 12, 180-184.  
11514661 W.A.Breyer, and B.W.Matthews (2001).
A structural basis for processivity.
  Protein Sci, 10, 1699-1711.  
11114499 A.Lewit-Bentley, and S.Réty (2000).
EF-hand calcium-binding proteins.
  Curr Opin Struct Biol, 10, 637-643.  
10931330 P.S.Rydman, and D.H.Bamford (2000).
Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity.
  Mol Microbiol, 37, 356-363.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer