PDBsum entry 1qq8

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
Protein chains
214 a.a.
HEM ×2
Waters ×349
Superseded by: 1n45
PDB id:
Name: Oxidoreductase
Title: X-ray crystal structure of human heme oxygenase-1 (ho-1) in complex with its substrate heme
Structure: Heme oxygenase. Chain: a, b. Fragment: expressed as residues 1-233. Engineered: yes. Other_details: complexed with its substrate heme
Source: Homo sapiens. Human. Expressed in: e.Coli
Biol. unit: Dimer (from PQS)
2.08Å     R-factor:   0.213     R-free:   0.265
Authors: D.J.Schuller,A.Wilks,P.R.Ortiz De Montellano,T.L.Poulos
Key ref:
D.J.Schuller et al. (1999). Crystal structure of human heme oxygenase-1. Nat Struct Biol, 6, 860-867. PubMed id: 10467099 DOI: 10.1038/12319
11-Jun-99     Release date:   01-Sep-99    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P09601  (HMOX1_HUMAN) -  Heme oxygenase 1
288 a.a.
214 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Heme oxygenase (biliverdin-producing).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Protoheme + 3 AH2 + 3 O2 = biliverdin + Fe2+ + CO + 3 A + 3 H2O
Bound ligand (Het Group name = HEM)
matches with 95.00% similarity
+ 3 × AH(2)
+ 3 × O(2)
= biliverdin
+ Fe(2+)
+ CO
+ 3 × A
+ 3 × H(2)O
Molecule diagrams generated from .mol files obtained from the KEGG ftp site


DOI no: 10.1038/12319 Nat Struct Biol 6:860-867 (1999)
PubMed id: 10467099  
Crystal structure of human heme oxygenase-1.
D.J.Schuller, A.Wilks, P.R.Ortiz de Montellano, T.L.Poulos.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.
  Selected figure(s)  
Figure 1.
Figure 1. Overall reaction catalyzed by heme oxygenase.
Figure 5.
Figure 5. Flexibility and alternate conformations of the two molecules in the asymmetric unit. a, Superposition of the two molecules, colored by temperature factor: blue, low-temperature factor; red, medium; yellow, high. b, Distal helix of molecule A. c, Distal helix of molecule B. d, e, 2F[o] - F[c] electron density for the heme of molecules A and B, respectively, with waters appearing as green spheres.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (1999, 6, 860-867) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21283550 C.Tuzmen, and B.Erman (2011).
Identification of ligand binding sites of proteins using the gaussian network model.
  PLoS One, 6, e16474.  
21314960 R.Q.Wang, Y.M.Nan, W.J.Wu, L.B.Kong, F.Han, S.X.Zhao, L.Kong, and J.Yu (2011).
Induction of heme oxygenase-1 protects against nutritional fibrosing steatohepatitis in mice.
  Lipids Health Dis, 10, 31.  
20812781 S.W.Ragsdale, and L.Yi (2011).
Thiol/Disulfide redox switches in the regulation of heme binding to proteins.
  Antioxid Redox Signal, 14, 1039-1047.  
20378668 G.S.Shekhawat, and K.Verma (2010).
Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence.
  J Exp Bot, 61, 2255-2270.  
20502928 J.D.Gardner, L.Yi, S.W.Ragsdale, and T.C.Brunold (2010).
Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2.
  J Biol Inorg Chem, 15, 1117-1127.  
20157751 M.Gheidi, N.Safari, and M.Zahedi (2010).
Theoretical investigation of the ring opening process of verdoheme to biliverdin in the presence of dioxygen.
  J Mol Model, 16, 1401-1413.  
19939208 M.Kajimura, R.Fukuda, R.M.Bateman, T.Yamamoto, and M.Suematsu (2010).
Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology.
  Antioxid Redox Signal, 13, 157-192.  
19917297 N.Chim, A.Iniguez, T.Q.Nguyen, and C.W.Goulding (2010).
Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis.
  J Mol Biol, 395, 595-608.
PDB code: 3hx9
19243105 H.Ogura, J.P.Evans, D.Peng, J.D.Satterlee, P.R.Ortiz de Montellano, and G.N.La Mar (2009).
The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: implications for the enzyme mechanism.
  Biochemistry, 48, 3127-3137.  
19556236 H.W.Hwang, J.R.Lee, K.Y.Chou, C.S.Suen, M.J.Hwang, C.Chen, R.C.Shieh, and L.Y.Chau (2009).
Oligomerization is crucial for the stability and function of heme oxygenase-1 in the endoplasmic reticulum.
  J Biol Chem, 284, 22672-22679.  
18976815 L.H.Ma, Y.Liu, X.Zhang, T.Yoshida, and G.N.La Mar (2009).
1H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular structure.
  J Inorg Biochem, 103, 10-19.  
19473966 L.Yi, P.M.Jenkins, L.I.Leichert, U.Jakob, J.R.Martens, and S.W.Ragsdale (2009).
Heme regulatory motifs in heme oxygenase-2 form a thiol/disulfide redox switch that responds to the cellular redox state.
  J Biol Chem, 284, 20556-20561.  
  19319934 M.D.Suits, J.Lang, G.P.Pal, M.Couture, and Z.Jia (2009).
Structure and heme binding properties of Escherichia coli O157:H7 ChuX.
  Protein Sci, 18, 825-838.
PDB code: 2ovi
19780837 N.Barison, L.Cendron, A.Trento, A.Angelini, and G.Zanotti (2009).
Structural and mutational analysis of TenA protein (HP1287) from the Helicobacter pylori thiamin salvage pathway - evidence of a different substrate specificity.
  FEBS J, 276, 6227-6235.
PDB code: 3ibx
19381358 V.Hower, P.Mendes, F.M.Torti, R.Laubenbacher, S.Akman, V.Shulaev, and S.V.Torti (2009).
A general map of iron metabolism and tissue-specific subnetworks.
  Mol Biosyst, 5, 422-443.  
19123922 W.J.Huber Iii, B.A.Scruggs, and W.L.Backes (2009).
C-Terminal membrane spanning region of human heme oxygenase-1 mediates a time-dependent complex formation with cytochrome P450 reductase.
  Biochemistry, 48, 190-197.  
19135260 Y.Jiang, M.J.Trnka, K.F.Medzihradszky, H.Ouellet, Y.Wang, and P.R.Ortiz de Montellano (2009).
Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.
  J Inorg Biochem, 103, 316-325.  
18487208 J.P.Evans, F.Niemevz, G.Buldain, and Montellano (2008).
Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.
  J Biol Chem, 283, 19530-19539.  
18643935 M.L.Reniere, and E.P.Skaar (2008).
Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem.
  Mol Microbiol, 69, 1304-1315.  
18758507 R.T.Kinobe, R.A.Dercho, and K.Nakatsu (2008).
Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic?
  Can J Physiol Pharmacol, 86, 577-599.  
18194664 Y.Higashimoto, M.Sugishima, H.Sato, H.Sakamoto, K.Fukuyama, G.Palmer, and M.Noguchi (2008).
Mass spectrometric identification of lysine residues of heme oxygenase-1 that are involved in its interaction with NADPH-cytochrome P450 reductase.
  Biochem Biophys Res Commun, 367, 852-858.  
17965015 C.M.Bianchetti, L.Yi, S.W.Ragsdale, and G.N.Phillips (2007).
Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2.
  J Biol Chem, 282, 37624-37631.
PDB codes: 2q32 2qpp 2rgz
17508725 L.O.Pereira, P.L.Oliveira, I.C.Almeida, and G.O.Paiva-Silva (2007).
Biglutaminyl-biliverdin IX alpha as a heme degradation product in the dengue fever insect-vector Aedes aegypti.
  Biochemistry, 46, 6822-6829.  
17387580 M.L.Reniere, V.J.Torres, and E.P.Skaar (2007).
Intracellular metalloporphyrin metabolism in Staphylococcus aureus.
  Biometals, 20, 333-345.  
17534530 M.Unno, T.Matsui, and M.Ikeda-Saito (2007).
Structure and catalytic mechanism of heme oxygenase.
  Nat Prod Rep, 24, 553-570.  
17224791 T.Y.Tsui, A.Obed, Y.T.Siu, S.F.Yet, L.Prantl, H.J.Schlitt, and S.T.Fan (2007).
Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism.
  Shock, 27, 165-171.  
17915953 W.J.Huber, and W.L.Backes (2007).
Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.
  Biochemistry, 46, 12212-12219.  
  16467393 C.W.Leffler, H.Parfenova, J.H.Jaggar, and R.Wang (2006).
Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation.
  J Appl Physiol, 100, 1065-1076.  
16428411 E.P.Skaar, A.H.Gaspar, and O.Schneewind (2006).
Bacillus anthracis IsdG, a heme-degrading monooxygenase.
  J Bacteriol, 188, 1071-1080.  
16388581 J.Wang, J.P.Evans, H.Ogura, G.N.La Mar, and P.R.Ortiz de Montellano (2006).
Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network.
  Biochemistry, 45, 61-73.  
16704267 L.H.Ma, Y.Liu, X.Zhang, T.Yoshida, and G.N.La Mar (2006).
1H NMR study of the magnetic properties and electronic structure of the hydroxide complex of substrate-bound heme oxygenase from Neisseria meningitidis: influence of the axial water deprotonation on the distal H-bond network.
  J Am Chem Soc, 128, 6657-6668.  
17023414 M.D.Suits, N.Jaffer, and Z.Jia (2006).
Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193.
  J Biol Chem, 281, 36776-36782.
PDB codes: 2hq2 4cdp
16817889 P.J.Linley, M.Landsberger, T.Kohchi, J.B.Cooper, and M.J.Terry (2006).
The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea.
  FEBS J, 273, 2594-2606.  
16952937 S.Puri, and M.R.O'Brian (2006).
The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes.
  J Bacteriol, 188, 6476-6482.  
17076701 T.Gohya, X.Zhang, T.Yoshida, and C.T.Migita (2006).
Spectroscopic characterization of a higher plant heme oxygenase isoform-1 from Glycine max (soybean)--coordination structure of the heme complex and catabolism of heme.
  FEBS J, 273, 5384-5399.  
16769893 T.Ueno, N.Yokoi, M.Unno, T.Matsui, Y.Tokita, M.Yamada, M.Ikeda-Saito, H.Nakajima, and Y.Watanabe (2006).
Design of metal cofactors activated by a protein-protein electron transfer system.
  Proc Natl Acad Sci U S A, 103, 9416-9421.
PDB codes: 1wzd 1wzf 1wzg
16928691 Y.Higashimoto, H.Sato, H.Sakamoto, K.Takahashi, G.Palmer, and M.Noguchi (2006).
The reactions of heme- and verdoheme-heme oxygenase-1 complexes with FMN-depleted NADPH-cytochrome P450 reductase. Electrons required for verdoheme oxidation can be transferred through a pathway not involving FMN.
  J Biol Chem, 281, 31659-31667.  
16548515 Y.Liu, L.H.Ma, X.Zhang, T.Yoshida, J.D.Satterlee, and G.N.La Mar (2006).
Characterization of the spontaneous "aging" of the heme oxygenase from the pathological bacterium Neisseria meningitidis via cleavage of the C-terminus in contact with the substrate. Implications for functional studies and the crystal structure.
  Biochemistry, 45, 3875-3886.  
15858269 J.Benach, W.C.Edstrom, I.Lee, K.Das, B.Cooper, R.Xiao, J.Liu, B.Rost, T.B.Acton, G.T.Montelione, and J.F.Hunt (2005).
The 2.35 A structure of the TenA homolog from Pyrococcus furiosus supports an enzymatic function in thiamine metabolism.
  Acta Crystallogr D Biol Crystallogr, 61, 589-598.
PDB code: 1rtw
15525643 J.Wang, L.Lad, T.L.Poulos, and P.R.Ortiz de Montellano (2005).
Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.
  J Biol Chem, 280, 2797-2806.
PDB codes: 1xk2 1xk3
15690204 L.Lad, A.Koshkin, Montellano, and T.L.Poulos (2005).
Crystal structures of the G139A, G139A-NO and G143H mutants of human heme oxygenase-1. A finely tuned hydrogen-bonding network controls oxygenase versus peroxidase activity.
  J Biol Inorg Chem, 10, 138-146.
PDB codes: 1xjz 1xk0 1xk1
15665092 L.W.Schultz, L.Liu, M.Cegielski, and J.W.Hastings (2005).
Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole.
  Proc Natl Acad Sci U S A, 102, 1378-1383.
PDB code: 1vpr
  16103276 S.Ding, L.Ingleby, C.A.Ahern, and R.Horn (2005).
Investigating the putative glycine hinge in Shaker potassium channel.
  J Gen Physiol, 126, 213-226.  
16115896 T.Matsui, A.Nakajima, H.Fujii, K.M.Matera, C.T.Migita, T.Yoshida, and M.Ikeda-Saito (2005).
O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation.
  J Biol Chem, 280, 36833-36840.  
15528205 T.Matsui, M.Furukawa, M.Unno, T.Tomita, and M.Ikeda-Saito (2005).
Roles of distal Asp in heme oxygenase from Corynebacterium diphtheriae, HmuO: A water-driven oxygen activation mechanism.
  J Biol Chem, 280, 2981-2989.
PDB codes: 1wnv 1wnw 1wnx
16025519 T.Y.Tsui, C.K.Lau, J.Ma, X.Wu, Y.Q.Wang, S.Farkas, R.Xu, H.J.Schlitt, and S.T.Fan (2005).
rAAV-mediated stable expression of heme oxygenase-1 in stellate cells: a new approach to attenuate liver fibrosis in rats.
  Hepatology, 42, 335-342.  
15691334 X.Zhang, C.T.Migita, M.Sato, M.Sasahara, and T.Yoshida (2005).
Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex.
  FEBS J, 272, 1012-1022.  
15516695 Y.Higashimoto, H.Sakamoto, S.Hayashi, M.Sugishima, K.Fukuyama, G.Palmer, and M.Noguchi (2005).
Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase.
  J Biol Chem, 280, 729-737.  
15175337 D.Boehning, L.Sedaghat, T.W.Sedlak, and S.H.Snyder (2004).
Heme oxygenase-2 is activated by calcium-calmodulin.
  J Biol Chem, 279, 30927-30930.  
15159569 H.Itou, M.Yao, N.Watanabe, and I.Tanaka (2004).
Structure analysis of PH1161 protein, a transcriptional activator TenA homologue from the hyperthermophilic archaeon Pyrococcus horikoshii.
  Acta Crystallogr D Biol Crystallogr, 60, 1094-1100.
PDB code: 1udd
15297453 J.Wang, F.Niemevz, L.Lad, L.Huang, D.E.Alvarez, G.Buldain, T.L.Poulos, and Montellano (2004).
Human heme oxygenase oxidation of 5- and 15-phenylhemes.
  J Biol Chem, 279, 42593-42604.
PDB codes: 1s13 1t5p
14615478 M.L.Pendrak, M.P.Chao, S.S.Yan, and D.D.Roberts (2004).
Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin.
  J Biol Chem, 279, 3426-3433.  
15560792 M.Sugishima, C.T.Migita, X.Zhang, T.Yoshida, and K.Fukuyama (2004).
Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme.
  Eur J Biochem, 271, 4517-4525.
PDB code: 1we1
14966119 M.Unno, T.Matsui, G.C.Chu, M.Couture, T.Yoshida, D.L.Rousseau, J.S.Olson, and M.Ikeda-Saito (2004).
Crystal structure of the dioxygen-bound heme oxygenase from Corynebacterium diphtheriae: implications for heme oxygenase function.
  J Biol Chem, 279, 21055-21061.
PDB code: 1v8x
  15345142 N.Frankenberg-Dinkel (2004).
Bacterial heme oxygenases.
  Antioxid Redox Signal, 6, 825-834.  
15148379 O.T.Magnusson, H.Toyama, M.Saeki, A.Rojas, J.C.Reed, R.C.Liddington, J.P.Klinman, and R.Schwarzenbacher (2004).
Quinone biogenesis: Structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone.
  Proc Natl Acad Sci U S A, 101, 7913-7918.
PDB codes: 1otv 1otw
15087448 R.Schwarzenbacher, F.Stenner-Liewen, H.Liewen, H.Robinson, H.Yuan, E.Bossy-Wetzel, J.C.Reed, and R.C.Liddington (2004).
Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis.
  J Biol Chem, 279, 29320-29324.
PDB code: 1rcw
15211525 R.Schwarzenbacher, F.Stenner-Liewen, H.Liewen, J.C.Reed, and R.C.Liddington (2004).
Crystal structure of PqqC from Klebsiella pneumoniae at 2.1 A resolution.
  Proteins, 56, 401-403.  
15310749 R.Wegele, R.Tasler, Y.Zeng, M.Rivera, and N.Frankenberg-Dinkel (2004).
The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa.
  J Biol Chem, 279, 45791-45802.  
14645223 S.Hirotsu, G.C.Chu, M.Unno, D.S.Lee, T.Yoshida, S.Y.Park, Y.Shiro, and M.Ikeda-Saito (2004).
The crystal structures of the ferric and ferrous forms of the heme complex of HmuO, a heme oxygenase of Corynebacterium diphtheriae.
  J Biol Chem, 279, 11937-11947.
PDB codes: 1iw0 1iw1
15096210 X.Zhang, M.Sato, M.Sasahara, C.T.Migita, and T.Yoshida (2004).
Unique features of recombinant heme oxygenase of Drosophila melanogaster compared with those of other heme oxygenases studied.
  Eur J Biochem, 271, 1713-1724.  
14660632 Y.Li, R.T.Syvitski, K.Auclair, Montellano, and G.N.La Mar (2004).
1H NMR investigation of the solution structure of substrate-free human heme oxygenase: comparison to the cyanide-inhibited, substrate-bound complex.
  J Biol Chem, 279, 10195-10205.  
15162474 Z.F.Yang, T.Y.Tsui, D.W.Ho, T.C.Tang, and S.T.Fan (2004).
Heme oxygenase-1 potentiates the survival of small-for-size liver graft.
  Liver Transpl, 10, 784-793.  
12581208 C.T.Migita, X.Zhang, and T.Yoshida (2003).
Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme.
  Eur J Biochem, 270, 687-698.  
12655052 J.A.Sigman, H.K.Kim, X.Zhao, J.R.Carey, and Y.Lu (2003).
The role of copper and protons in heme-copper oxidases: kinetic study of an engineered heme-copper center in myoglobin.
  Proc Natl Acad Sci U S A, 100, 3629-3634.  
12819228 J.Friedman, L.Lad, R.Deshmukh, H.Li, A.Wilks, and T.L.Poulos (2003).
Crystal structures of the NO- and CO-bound heme oxygenase from Neisseriae meningitidis. Implications for O2 activation.
  J Biol Chem, 278, 34654-34659.
PDB codes: 1p3t 1p3u 1p3v
12626517 J.Wang, and Montellano (2003).
The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.
  J Biol Chem, 278, 20069-20076.  
12433915 J.Wang, S.Lu, P.Moënne-Loccoz, and P.R.Ortiz de Montellano (2003).
Interaction of nitric oxide with human heme oxygenase-1.
  J Biol Chem, 278, 2341-2347.  
12794075 M.Sugishima, H.Sakamoto, Y.Higashimoto, M.Noguchi, and K.Fukuyama (2003).
Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction.
  J Biol Chem, 278, 32352-32358.
PDB code: 1j2c
12840010 O.Protchenko, and C.C.Philpott (2003).
Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae.
  J Biol Chem, 278, 36582-36587.  
14580148 S.Shibahara (2003).
The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism.
  Tohoku J Exp Med, 200, 167-186.  
14514669 Y.H.Weng, G.Yang, S.Weiss, and P.A.Dennery (2003).
Interaction between heme oxygenase-1 and -2 proteins.
  J Biol Chem, 278, 50999-51005.  
12480929 Y.Li, R.T.Syvitski, G.C.Chu, M.Ikeda-Saito, and G.N.Mar (2003).
Solution 1H NMR investigation of the active site molecular and electronic structures of substrate-bound, cyanide-inhibited HmuO, a bacterial heme oxygenase from Corynebacterium diphtheriae.
  J Biol Chem, 278, 6651-6663.  
12230872 A.Wilks (2002).
Heme oxygenase: evolution, structure, and mechanism.
  Antioxid Redox Signal, 4, 603-614.  
12429096 E.Enggist, L.Thöny-Meyer, P.Güntert, and K.Pervushin (2002).
NMR structure of the heme chaperone CcmE reveals a novel functional motif.
  Structure, 10, 1551-1557.
PDB codes: 1liz 1sr3
12392555 H.Sakamoto, Y.Omata, S.Hayashi, S.Harada, G.Palmer, and M.Noguchi (2002).
The reactivity of alpha-hydroxyhaem and verdohaem bound to haem oxygenase-1 to dioxygen and sodium dithionite.
  Eur J Biochem, 269, 5231-5239.  
12235152 M.Sugishima, H.Sakamoto, Y.Higashimoto, Y.Omata, S.Hayashi, M.Noguchi, and K.Fukuyama (2002).
Crystal structure of rat heme oxygenase-1 in complex with heme bound to azide. Implication for regiospecific hydroxylation of heme at the alpha-meso carbon.
  J Biol Chem, 277, 45086-45090.
PDB code: 1ivj
12044160 M.Sugishima, H.Sakamoto, Y.Kakuta, Y.Omata, S.Hayashi, M.Noguchi, and K.Fukuyama (2002).
Crystal structure of rat apo-heme oxygenase-1 (HO-1): mechanism of heme binding in HO-1 inferred from structural comparison of the apo and heme complex forms.
  Biochemistry, 41, 7293-7300.
PDB code: 1irm
12070167 Y.Li, R.T.Syvitski, K.Auclair, A.Wilks, P.R.Ortiz De Montellano, and G.N.La Mar (2002).
Solution NMR characterization of an unusual distal H-bond network in the active site of the cyanide-inhibited, human heme oxygenase complex of the symmetric substrate, 2,4-dimethyldeuterohemin.
  J Biol Chem, 277, 33018-33031.  
11331003 H.Li, C.S.Raman, P.Martásek, B.S.Masters, and T.L.Poulos (2001).
Crystallographic studies on endothelial nitric oxide synthase complexed with nitric oxide and mechanism-based inhibitors.
  Biochemistry, 40, 5399-5406.
PDB codes: 1ed6 1foi 1fol 1foo 1fop
11591684 M.Ratliff, W.Zhu, R.Deshmukh, A.Wilks, and I.Stojiljkovic (2001).
Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa.
  J Bacteriol, 183, 6394-6403.  
10766788 A.Wilks, and P.Moënne-Loccoz (2000).
Identification of the proximal ligand His-20 in heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Oxidative cleavage of the heme macrocycle does not require the proximal histidine.
  J Biol Chem, 275, 11686-11692.  
11073924 W.Zhu, A.Wilks, and I.Stojiljkovic (2000).
Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase.
  J Bacteriol, 182, 6783-6790.  
10681502 Y.Liu, and P.R.Ortiz de Montellano (2000).
Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1.
  J Biol Chem, 275, 5297-5307.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.